Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simultaneous analysis of enzyme structure and activity by kinetic capillary electrophoresis–MS

Abstract

To enable the detection of protein conformational isomers, their enzymatic activity and their inhibition in a single experiment, we developed a method based on kinetic capillary electrophoresis coupled on-line with UV detection and ion mobility mass spectrometry (CE–UV–IM–MS). Kinetic CE–UV separated protein conformers and monitored their interconversion dynamics in solution. Ion mobility mass spectrometry analyzed the conformer sizes, exact molecular weights, and structures of an enzyme and of its substrates, inhibitors and corresponding products. This coupled CE–UV–IM–MS system allowed the simultaneous, real-time observation of the effect of small-molecule inhibitors on both the conformational distribution and enzymatic activity of the human tissue transglutaminase TG2. By expanding mass spectrometry profiling of enzymatic reactions beyond proteins and substrates to include protein dynamics, CE–UV–IM–MS opens a new avenue for the modulation and regulation of cellular functions, drug development and protein engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of CE–UV–IM–MS method.
Figure 2: CE–UV–IM–MS experimental data.
Figure 3: Effects of inhibitors on enzyme structure and activity.

Similar content being viewed by others

References

  1. Tzeng, S.R. & Kalodimos, C.G. Protein activity regulation by conformational entropy. Nature 488, 236–240 (2012).

    Article  CAS  Google Scholar 

  2. Goodey, N.M. & Benkovic, S.J. Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 4, 474–482 (2008).

    Article  CAS  Google Scholar 

  3. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  CAS  Google Scholar 

  4. Bruning, J.B. et al. Coupling of receptor conformation and ligand orientation determine graded activity. Nat. Chem. Biol. 6, 837–843 (2010).

    Article  CAS  Google Scholar 

  5. Ruschak, A.M. & Kay, L.E. Proteasome allostery as a population shift between interchanging conformers. Proc. Natl. Acad. Sci. USA 109, E3454–E3462 (2012).

    Article  CAS  Google Scholar 

  6. Karplus, M. & Kuriyan, J. Molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA 102, 6679–6685 (2005).

    Article  CAS  Google Scholar 

  7. Kar, G., Keskin, O., Gursoy, A. & Nussinov, R. Allostery and population shift in drug discovery. Curr. Opin. Pharmacol. 10, 715–722 (2010).

    Article  CAS  Google Scholar 

  8. Nussinov, R. & Tsai, C.J. Allostery in disease and in drug discovery. Cell 153, 293–305 (2013).

    Article  CAS  Google Scholar 

  9. Nussinov, R. & Tsai, C.J. The design of covalent allosteric drugs. Annu. Rev. Pharmacol. Toxicol. 55, 249–267 (2015).

    Article  CAS  Google Scholar 

  10. Garman, E. 'Cool' crystals: macromolecular cryocrystallography and radiation damage. Curr. Opin. Struct. Biol. 13, 545–551 (2003).

    Article  CAS  Google Scholar 

  11. Fraser, J.S. et al. Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc. Natl. Acad. Sci. USA 108, 16247–16252 (2011).

    Article  CAS  Google Scholar 

  12. Keedy, D.A. et al. Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. Structure 22, 899–910 (2014).

    Article  CAS  Google Scholar 

  13. Boehr, D.D., Dyson, H.J. & Wright, P.E. An NMR perspective on enzyme dynamics. Chem. Rev. 106, 3055–3079 (2006).

    Article  CAS  Google Scholar 

  14. Baldwin, A.J. & Kay, L.E. NMR spectroscopy brings invisible protein states into focus. Nat. Chem. Biol. 5, 808–814 (2009).

    Article  CAS  Google Scholar 

  15. Mulder, F.A., Mittermaier, A., Hon, B., Dahlquist, F.W. & Kay, L.E. Studying excited states of proteins by NMR spectroscopy. Nat. Struct. Biol. 8, 932–935 (2001).

    Article  CAS  Google Scholar 

  16. Tang, C., Schwieters, C.D. & Clore, G.M. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449, 1078–1082 (2007).

    Article  CAS  Google Scholar 

  17. Eisenmesser, E.Z., Bosco, D.A., Akke, M. & Kern, D. Enzyme dynamics during catalysis. Science 295, 1520–1523 (2002).

    Article  CAS  Google Scholar 

  18. Watt, E.D., Shimada, H., Kovrigin, E.L. & Loria, J.P. The mechanism of rate-limiting motions in enzyme function. Proc. Natl. Acad. Sci. USA 104, 11981–11986 (2007).

    Article  CAS  Google Scholar 

  19. Kempf, J.G., Jung, J.Y., Ragain, C., Sampson, N.S. & Loria, J.P. Dynamic requirements for a functional protein hinge. J. Mol. Biol. 368, 131–149 (2007).

    Article  CAS  Google Scholar 

  20. Korzhnev, D.M. et al. Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430, 586–590 (2004).

    Article  CAS  Google Scholar 

  21. Tang, Y., Grey, M.J., McKnight, J., Palmer, A.G. III & Raleigh, D.P. Multistate folding of the villin headpiece domain. J. Mol. Biol. 355, 1066–1077 (2006).

    Article  CAS  Google Scholar 

  22. Korzhnev, D.M. & Kay, L.E. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Acc. Chem. Res. 41, 442–451 (2008).

    Article  CAS  Google Scholar 

  23. Smith, M.J. et al. Real-time NMR monitoring of biological activities in complex physiological environments. Curr. Opin. Struct. Biol. 32, 39–47 (2015).

    Article  CAS  Google Scholar 

  24. Bernadó, P., Mylonas, E., Petoukhov, M.V., Blackledge, M. & Svergun, D.I. Structural characterization of flexible proteins using small-angle X-ray scattering. J. Am. Chem. Soc. 129, 5656–5664 (2007).

    Article  Google Scholar 

  25. Fischetti, R.F., Rodi, D.J., Gore, D.B. & Makowski, L. Wide-angle X-ray solution scattering as a probe of ligand-induced conformational changes in proteins. Chem. Biol. 11, 1431–1443 (2004).

    Article  CAS  Google Scholar 

  26. Nguyen, H.T., Pabit, S.A., Meisburger, S.P., Pollack, L. & Case, D.A. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids. J. Chem. Phys. 141, 22D508 (2014).

    Article  Google Scholar 

  27. Heyduk, T. Measuring protein conformational changes by FRET/LRET. Curr. Opin. Biotechnol. 13, 292–296 (2002).

    Article  CAS  Google Scholar 

  28. Truong, K. & Ikura, M. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr. Opin. Struct. Biol. 11, 573–578 (2001).

    Article  CAS  Google Scholar 

  29. Shi, H., Pierson, N.A., Valentine, S.J. & Clemmer, D.E. Conformation types of ubiquitin [M+8H]8+ ions from water:methanol solutions: evidence for the N and A States in aqueous solution. J. Phys. Chem. B 116, 3344–3352 (2012).

    Article  CAS  Google Scholar 

  30. Smith, D.P., Giles, K., Bateman, R.H., Radford, S.E. & Ashcroft, A.E. Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 2180–2190 (2007).

    Article  CAS  Google Scholar 

  31. Nabuchi, Y., Hirose, K. & Takayama, M. Ion mobility and collision-induced dissociation analysis of carbonic anhydrase 2. Anal. Chem. 82, 8890–8896 (2010).

    Article  CAS  Google Scholar 

  32. Konijnenberg, A., Butterer, A. & Sobott, F. Native ion mobility-mass spectrometry and related methods in structural biology. Biochim. Biophys. Acta 1834, 1239–1256 (2013).

    Article  CAS  Google Scholar 

  33. Kaddis, C.S. & Loo, J.A. Native protein MS and ion mobility large flying proteins with ESI. Anal. Chem. 79, 1778–1784 (2007).

    Article  CAS  Google Scholar 

  34. Wolynes, P.G. Biomolecular folding in vacuo!!!(?). Proc. Natl. Acad. Sci. USA 92, 2426–2427 (1995).

    Article  CAS  Google Scholar 

  35. Jurneczko, E. & Barran, P.E. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst. 136, 20–28 (2011).

    Article  CAS  Google Scholar 

  36. Berezovski, M. & Krylov, S.N. Nonequilibrium capillary electrophoresis of equilibrium mixtures—a single experiment reveals equilibrium and kinetic parameters of protein-DNA interactions. J. Am. Chem. Soc. 124, 13674–13675 (2002).

    Article  CAS  Google Scholar 

  37. Heegaard, N.H., Rovatti, L., Nissen, M.H. & Hamdan, M. Structural and conformational variants of human beta2-microglobulin characterized by capillary electrophoresis and complementary separation methods. J. Chromatogr. A 1004, 51–59 (2003).

    Article  CAS  Google Scholar 

  38. Mironov, G.G. et al. Bioanalysis for biocatalysis: multiplexed capillary electrophoresis-mass spectrometry assay for aminotransferase substrate discovery and specificity profiling. J. Am. Chem. Soc. 135, 13728–13736 (2013).

    Article  CAS  Google Scholar 

  39. Liu, S., Cerione, R.A. & Clardy, J. Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc. Natl. Acad. Sci. USA 99, 2743–2747 (2002).

    Article  CAS  Google Scholar 

  40. Clouthier, C.M., Mironov, G.G., Okhonin, V., Berezovski, M.V. & Keillor, J.W. Real-time monitoring of protein conformational dynamics in solution using kinetic capillary electrophoresis. Angew. Chem. Int. Edn Engl. 51, 12464–12468 (2012).

    Article  CAS  Google Scholar 

  41. Gnaccarini, C., Ben-Tahar, W., Lubell, W.D., Pelletier, J.N. & Keillor, J.W. Fluorometric assay for tissue transglutaminase-mediated transamidation activity. Bioorg. Med. Chem. 17, 6354–6359 (2009).

    Article  CAS  Google Scholar 

  42. Hu, B.H. & Messersmith, P.B. Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. J. Am. Chem. Soc. 125, 14298–14299 (2003).

    Article  CAS  Google Scholar 

  43. Caron, N.S., Munsie, L.N., Keillor, J.W. & Truant, R. Using FLIM-FRET to measure conformational changes of transglutaminase type 2 in live cells. PLoS One 7, e44159 (2012).

    Article  CAS  Google Scholar 

  44. Keillor, J.W. et al. The bioorganic chemistry of transglutaminase — from mechanism to inhibition and engineering. Can. J. Chem. 86, 271–276 (2008).

    Article  CAS  Google Scholar 

  45. Grant, B.J., Gorfe, A.A. & McCammon, J.A. Large conformational changes in proteins: signaling and other functions. Curr. Opin. Struct. Biol. 20, 142–147 (2010).

    Article  CAS  Google Scholar 

  46. Mattevi, A., Rizzi, M. & Bolognesi, M. New structures of allosteric proteins revealing remarkable conformational changes. Curr. Opin. Struct. Biol. 6, 824–829 (1996).

    Article  CAS  Google Scholar 

  47. Lipscomb, W.N. Multisubunit allosteric proteins. in Protein Dynamics, Function, and Design (eds. Jardetzky, O., Lefèvre, J.-F. &. Holbrook, R.E.) 27–35 (Springer, 1998).

  48. Pinkas, D.M., Strop, P., Brunger, A.T. & Khosla, C. Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol. 5, e327 (2007).

    Article  Google Scholar 

  49. Roy, I., Smith, O., Clouthier, C.M. & Keillor, J.W. Expression, purification and kinetic characterisation of human tissue transglutaminase. Protein Expr. Purif. 87, 41–46 (2013).

    Article  CAS  Google Scholar 

  50. Lubell, W.D., Blankenship, J.W., Fridkin, G. & Kaul, R. Peptides: Science of Synthesis (Thieme, Stuttgart, 2005).

  51. Leblanc, A., Gravel, C., Labelle, J. & Keillor, J.W. Kinetic studies of guinea pig liver transglutaminase reveal a general-base-catalyzed deacylation mechanism. Biochemistry 40, 8335–8342 (2001).

    Article  CAS  Google Scholar 

  52. Stone, S.R. & Hofsteenge, J. Specificity of activated human protein C. Biochem. J. 230, 497–502 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (M.V.B. and J.W.K.), the Canada Foundation for Innovation (M.V.B.), the Ministry of Research and Innovation, Ontario, Canada (M.V.B.) and by an Ontario Graduate Scholarship (for G.G.M.).

Author information

Authors and Affiliations

Authors

Contributions

G.G.M., J.W.K., and M.V.B. conceived of the project, designed the experiments, analyzed the data, and wrote the manuscript. G.G.M. built the CE–UV–IM–MS system and performed all CE–UV, IM–MS and CE–UV–IM–MS experiments, conformational analysis, and inhibition analysis. C.M.C. expressed and purified TG2 protein, synthesized peptide substrates, and assisted in writing the manuscript; A.A. synthesized inhibitors, measured inhibition kinetics with a chromogenic substrate, and assisted in writing the manuscript.

Corresponding authors

Correspondence to Jeffrey W Keillor or Maxim V Berezovski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–3 and Supplementary Table 1. (PDF 374 kb)

Supplementary Note

Supplementary Note (PDF 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, G., Clouthier, C., Akbar, A. et al. Simultaneous analysis of enzyme structure and activity by kinetic capillary electrophoresis–MS. Nat Chem Biol 12, 918–922 (2016). https://doi.org/10.1038/nchembio.2170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing