Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluorogenic probes reveal a role of GLUT4 N-glycosylation in intracellular trafficking

Abstract

Glucose transporter 4 (GLUT4) is an N-glycosylated protein that maintains glucose homeostasis by regulating the protein translocation. To date, it has been unclear whether the N-glycan of GLUT4 contributes to its intracellular trafficking. Here, to clarify the role of the N-glycan, we developed fluorogenic probes that label cytoplasmic and plasma-membrane proteins for multicolor imaging of GLUT4 translocation. One of the probes, which is cell impermeant, selectively detected exocytosed GLUT4. Using this probe, we verified the 'log' of the trafficking, in which N-glycan-deficient GLUT4 was transiently translocated to the cell membrane upon insulin stimulation and was rapidly internalized without retention on the cell membrane. The results strongly suggest that the N-glycan functions in the retention of GLUT4 on the cell membrane. This study showed the utility of the fluorogenic probes and indicated that this imaging tool will be applicable for research on various membrane proteins that show dynamic changes in localization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence labeling of PYP tag using AT-DNB2.
Figure 2: GLUT4 translocation triggered by addition and removal of insulin.
Figure 3: Effect of disordered N-glycan synthesis on GLUT4 translocation.
Figure 4: Loss of continuous localization of N-glycan-truncated GLUT4 on the plasma membrane.

Similar content being viewed by others

References

  1. Kukuruzinska, M.A. & Lennon, K. Protein N-glycosylation: molecular genetics and functional significance. Crit. Rev. Oral Biol. Med. 9, 415–448 (1998).

    Article  CAS  Google Scholar 

  2. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).

    Article  CAS  Google Scholar 

  3. Ing, B.L., Chen, H., Robinson, K.A., Buse, M.G. & Quon, M.J. Characterization of a mutant GLUT4 lacking the N-glycosylation site: studies in transfected rat adipose cells. Biochem. Biophys. Res. Commun. 218, 76–82 (1996).

    Article  CAS  Google Scholar 

  4. Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999).

    Article  CAS  Google Scholar 

  5. Hart, G.W. & Copeland, R.J. Glycomics hits the big time. Cell 143, 672–676 (2010).

    Article  CAS  Google Scholar 

  6. Leto, D. & Saltiel, A.R. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 13, 383–396 (2012).

    Article  CAS  Google Scholar 

  7. Sadler, J.B., Bryant, N.J., Gould, G.W. & Welburn, C.R. Posttranslational modifications of GLUT4 affect its subcellular localization and translocation. Int. J. Mol. Sci. 14, 9963–9978 (2013).

    Article  Google Scholar 

  8. Garvey, W.T. et al. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J. Clin. Invest. 101, 2377–2386 (1998).

    Article  CAS  Google Scholar 

  9. Ryder, J.W. et al. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes 49, 647–654 (2000).

    Article  CAS  Google Scholar 

  10. Haga, Y. et al. Visualizing specific protein glycoforms by transmembrane fluorescence resonance energy transfer. Nat. Commun. 3, 907 (2012).

    Article  Google Scholar 

  11. Zaarour, N., Berenguer, M., Le Marchand-Brustel, Y. & Govers, R. Deciphering the role of GLUT4 N-glycosylation in adipocyte and muscle cell models. Biochem. J. 445, 265–273 (2012).

    Article  CAS  Google Scholar 

  12. Haga, Y., Ishii, K. & Suzuki, T. N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4. J. Biol. Chem. 286, 31320–31327 (2011).

    Article  CAS  Google Scholar 

  13. Crivat, G. & Taraska, J.W. Imaging proteins inside cells with fluorescent tags. Trends Biotechnol. 30, 8–16 (2012).

    Article  CAS  Google Scholar 

  14. Nadler, A. & Schultz, C. The power of fluorogenic probes. Angew. Chem. Int. Ed. Engl. 52, 2408–2410 (2013).

    Article  CAS  Google Scholar 

  15. Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013).

    Article  Google Scholar 

  16. Komatsu, T. et al. Real-time measurements of protein dynamics using fluorescence activation-coupled protein labeling method. J. Am. Chem. Soc. 133, 6745–6751 (2011).

    Article  CAS  Google Scholar 

  17. Zhang, C.J., Li, L., Chen, G.Y., Xu, Q.H. & Yao, S.Q. One- and two-photon live cell imaging using a mutant SNAP-Tag protein and its FRET substrate pairs. Org. Lett. 13, 4160–4163 (2011).

    Article  CAS  Google Scholar 

  18. Sun, X. et al. Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. ChemBioChem 12, 2217–2226 (2011).

    Article  CAS  Google Scholar 

  19. Liu, T.K. et al. A rapid SNAP-tag fluorogenic probe based on an environment-sensitive fluorophore for no-wash live cell imaging. ACS Chem. Biol. 9, 2359–2365 (2014).

    Article  CAS  Google Scholar 

  20. Grimm, J.B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250, 3, 250 (2015).

    Article  CAS  Google Scholar 

  21. Telmer, C.A. et al. Rapid, specific, no-wash, far-red fluorogen activation in subcellular compartments by targeted fluorogen activating proteins. ACS Chem. Biol. 10, 1239–1246 (2015).

    Article  CAS  Google Scholar 

  22. Jing, C. & Cornish, V.W. A fluorogenic TMP-tag for high signal-to-background intracellular live cell imaging. ACS Chem. Biol. 8, 1704–1712 (2013).

    Article  CAS  Google Scholar 

  23. Chen, Y. et al. Coumarin-based fluorogenic probes for no-wash protein labeling. Angew. Chem. Int. Ed. Engl. 53, 13785–13788 (2014).

    Article  CAS  Google Scholar 

  24. Mizukami, S., Watanabe, S., Akimoto, Y. & Kikuchi, K. No-wash protein labeling with designed fluorogenic probes and application to real-time pulse-chase analysis. J. Am. Chem. Soc. 134, 1623–1629 (2012).

    Article  CAS  Google Scholar 

  25. Sadhu, K.K., Mizukami, S., Watanabe, S. & Kikuchi, K. Turn-on fluorescence switch involving aggregation and elimination processes for β-lactamase-tag. Chem. Commun. (Camb.) 46, 7403–7405 (2010).

    Article  CAS  Google Scholar 

  26. Hori, Y. & Kikuchi, K. Protein labeling with fluorogenic probes for no-wash live-cell imaging of proteins. Curr. Opin. Chem. Biol. 17, 644–650 (2013).

    Article  CAS  Google Scholar 

  27. Hori, Y., Ueno, H., Mizukami, S. & Kikuchi, K. Photoactive yellow protein-based protein labeling system with turn-on fluorescence intensity. J. Am. Chem. Soc. 131, 16610–16611 (2009).

    Article  CAS  Google Scholar 

  28. Hori, Y., Nakaki, K., Sato, M., Mizukami, S. & Kikuchi, K. Development of protein-labeling probes with a redesigned fluorogenic switch based on intramolecular association for no-wash live-cell imaging. Angew. Chem. Int. Ed. Engl. 51, 5611–5614 (2012).

    Article  CAS  Google Scholar 

  29. Hori, Y. et al. Development of fluorogenic probes for quick no-wash live-cell imaging of intracellular proteins. J. Am. Chem. Soc. 135, 12360–12365 (2013).

    Article  CAS  Google Scholar 

  30. Hori, Y., Hirayama, S., Sato, M. & Kikuchi, K. Redesign of a fluorogenic labeling system to improve surface charge, brightness, and binding kinetics for imaging the functional localization of bromodomains. Angew. Chem. Int. Ed. Engl. 54, 14368–14371 (2015).

    Article  CAS  Google Scholar 

  31. Kumauchi, M., Hara, M.T., Stalcup, P., Xie, A. & Hoff, W.D. Identification of six new photoactive yellow proteins–diversity and structure-function relationships in a bacterial blue light photoreceptor. Photochem. Photobiol. 84, 956–969 (2008).

    Article  CAS  Google Scholar 

  32. Meyer, T.E. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochim. Biophys. Acta 806, 175–183 (1985).

    Article  CAS  Google Scholar 

  33. Sunbul, M. & Jäschke, A. Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer. Angew. Chem. Int. Ed. Engl. 52, 13401–13404 (2013).

    Article  CAS  Google Scholar 

  34. Rotman, B. & Papermaster, B.W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc. Natl. Acad. Sci. USA 55, 134–141 (1966).

    Article  CAS  Google Scholar 

  35. Gonzalez, D.S., Karaveg, K., Vandersall-Nairn, A.S., Lal, A. & Moremen, K.W. Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J. Biol. Chem. 274, 21375–21386 (1999).

    Article  CAS  Google Scholar 

  36. Johansson, M.K. & Cook, R.M. Intramolecular dimers: a new design strategy for fluorescence-quenched probes. Chemistry 9, 3466–3471 (2003).

    Article  CAS  Google Scholar 

  37. Vagin, O., Kraut, J.A. & Sachs, G. Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am. J. Physiol. Renal Physiol. 296, F459–F469 (2009).

    Article  CAS  Google Scholar 

  38. Vagin, O., Turdikulova, S. & Sachs, G. The H,K-ATPase beta subunit as a model to study the role of N-glycosylation in membrane trafficking and apical sorting. J. Biol. Chem. 279, 39026–39034 (2004).

    Article  CAS  Google Scholar 

  39. Stenkula, K.G., Lizunov, V.A., Cushman, S.W. & Zimmerberg, J. Insulin controls the spatial distribution of GLUT4 on the cell surface through regulation of its postfusion dispersal. Cell Metab. 12, 250–259 (2010).

    Article  CAS  Google Scholar 

  40. Lizunov, V.A., Stenkula, K., Troy, A., Cushman, S.W. & Zimmerberg, J. Insulin regulates Glut4 confinement in plasma membrane clusters in adipose cells. PLoS One 8, e57559 (2013).

    Article  CAS  Google Scholar 

  41. Ishida, H., Tobita, S., Hasegawa, Y., Katoh, R. & Nozaki, K. Recent advances in instrumentation for absolute emission quantum yield measurements. Coord. Chem. Rev. 254, 2449–2458 (2010).

    Article  CAS  Google Scholar 

  42. Weber, G. & Teale, F.W.J. Determination of the absolute quantum yield of fluorescent solutions. Transactions of the Faraday Society 53, 646–655 (1957).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by JST, PRESTO, MEXT of Japan (grants 25220207, 26102529, 15K12754 to K.K.; 26282215 to Y.H.; and 14J00755 to S.H.), CREST of JST (K.K.), the Asahi Glass Foundation (K.K.), the Uehara Memorial Foundation (K.K.), the Naito Foundation (Y.H.), the Mochida Memorial Foundation for Medical and Pharmaceutical Research (Y.H.), and the Program for Creating Future Wisdom, Osaka University, selected in 2014 (Y.H.). We thank Y. Haga (Japanese Foundation for Cancer Research, Tokyo, Japan) for valuable suggestions and the gift of GLUT4 plasmids, and M. Nishiura for experimental support.

Author information

Authors and Affiliations

Authors

Contributions

S.H., Y.H., T.S. and K.K. designed experiments. S.H. and Z.B. synthesized and characterized chemical probes and performed the cell experiment. T.S. cloned and provided GLUT4 gene. S.H., Y.H., T.S. and K.K. wrote the manuscript. Y.H. and K.K. designed the project. All of the authors contributed to the manuscript.

Corresponding author

Correspondence to Kazuya Kikuchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–28. (PDF 4399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirayama, S., Hori, Y., Benedek, Z. et al. Fluorogenic probes reveal a role of GLUT4 N-glycosylation in intracellular trafficking. Nat Chem Biol 12, 853–859 (2016). https://doi.org/10.1038/nchembio.2156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing