Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum

Abstract

Studies of gene function and molecular mechanisms in Plasmodium falciparum are hampered by difficulties in characterizing and measuring phenotypic differences between individual parasites. We screened seven parasite lines for differences in responses to 1,279 bioactive chemicals. Hundreds of compounds were active in inhibiting parasite growth; 607 differential chemical phenotypes, defined as pairwise IC50 differences of fivefold or more between parasite lines, were cataloged. We mapped major determinants for three differential chemical phenotypes between the parents of a genetic cross, and we identified target genes by fine mapping and testing the responses of parasites in which candidate genes were genetically replaced with mutant alleles. Differential sensitivity to dihydroergotamine methanesulfonate (1), a serotonin receptor antagonist, was mapped to a gene encoding the homolog of human P-glycoprotein (PfPgh-1). This study identifies new leads for antimalarial drugs and demonstrates the utility of a high-throughput chemical genomic strategy for studying malaria traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A chemical genomic strategy for studying gene function in malaria parasites.
Figure 2: Hierarchical clustering of compound activities in seven P. falciparum lines.
Figure 3: Mapping genetic loci contributing to IC50 differences between 7G8 and GB4 in response to dihydroergotamine methanesulfonate (DHMS, 1).
Figure 4: Identification of genetic loci linked to response to trimethoprim (11).

Similar content being viewed by others

References

  1. Snow, R.W., Guerra, C.A., Noor, A.M., Myint, H.Y. & Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Noedl, H. et al. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Su, X.-z. & Wootton, J.C. Genetic mapping in the human malaria parasite Plasmodium falciparum. Mol. Microbiol. 53, 1573–1582 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Su, X.-z., Hayton, K. & Wellems, T.E. Genetic linkage and association analyses for trait mapping in Plasmodium falciparum. Nat. Rev. Genet. 8, 497–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Gardner, M.J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Knockaert, M. et al. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem. Biol. 7, 411–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Walliker, D. et al. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 1661–1666 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Wellems, T.E. et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345, 253–255 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Hayton, K. et al. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe 4, 40–51 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Inglese, J. et al. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad. Sci. USA 103, 11473–11478 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Plouffe, D. et al. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl. Acad. Sci. USA 105, 9059–9064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pollock, L.A. Further experience with dihydroergotamine methanesulfonate in the treatment of migraine; with a note on the use of cafergone. Ann. West Med. Surg. 3, 388–390 (1949).

    CAS  PubMed  Google Scholar 

  13. Mehrotra, S. et al. Current and prospective pharmacological targets in relation to antimigraine action. Naunyn Schmiedebergs Arch. Pharmacol. 378, 371–394 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Gangjee, A., Jain, H.D. & Kurup, S. Recent advances in classical and non-classical antifolates as antitumor and antiopportunistic infection agents: Part II. Anticancer. Agents Med. Chem. 8, 205–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Busch, A.E. et al. Blockade of epithelial Na+ channels by triamterenes - underlying mechanisms and molecular basis. Pflugers Arch. 432, 760–766 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Schaerlinger, B., Hickel, P., Etienne, N., Guesnier, L. & Maroteaux, L. Agonist actions of dihydroergotamine at 5–HT2B and 5–HT2C receptors and their possible relevance to antimigraine efficacy. Br. J. Pharmacol. 140, 277–284 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Foote, S.J. et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345, 255–258 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Reed, M.B., Saliba, K.J., Caruana, S.R., Kirk, K. & Cowman, A.F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906–909 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Sidhu, A.B., Valderramos, S.G. & Fidock, D.A. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol. Microbiol. 57, 913–926 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Schalhorn, A., Siegert, W. & Sauer, H.J. Antifolate effect of triamterene on human leucocytes and on a human lymphoma cell line. Eur. J. Clin. Pharmacol. 20, 219–224 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Hayton, K. & Su, X.-z. Genetic and biochemical aspects of drug resistance in malaria parasites. Curr. Drug Targets Infect. Disord. 4, 1–10 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Kublin, J.G. et al. Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. J. Infect. Dis. 185, 380–388 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Wu, Y. & Wellems, T.E. Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Natl. Acad. Sci. USA 93, 1130–1134 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Su, X.-z. et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286, 1351–1353 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Hayton, K. & Su, X.-z. Drug resistance and genetic mapping in Plasmodium falciparum. Curr. Genet. 54, 223–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Mu, J. et al. Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. Nat. Genet. 39, 126–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Jeffares, D.C. et al. Genome variation and evolution of the malaria parasite Plasmodium falciparum. Nat. Genet. 39, 120–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Volkman, S.K. et al. A genome-wide map of diversity in Plasmodium falciparum. Nat. Genet. 39, 113–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Weisman, J.L. et al. Searching for new antimalarial therapeutics amongst known drugs. Chem. Biol. Drug Des. 67, 409–416 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chong, C.R., Chen, X., Shi, L., Liu, J.O. & Sullivan, D.J. Jr. A clinical drug library screen identifies astemizole as an antimalarial agent. Nat. Chem. Biol. 2, 415–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Baniecki, M.L., Wirth, D.F. & Clardy, J. High-throughput Plasmodium falciparum growth assay for malaria drug discovery. Antimicrob. Agents Chemother. 51, 716–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Kato, N. et al. Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nat. Chem. Biol. 4, 347–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Arastu-Kapur, S. et al. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat. Chem. Biol. 4, 203–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Wellems, T. et al. Chromosome size variation occurs in cloned Plasmodium falciparum on in vitro cultivation. Rev. Bras. Genet. 11, 813–825 (1988).

    Google Scholar 

  35. Rathod, P.K., McErlean, T. & Lee, P.C. Variations in frequencies of drug resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 94, 9389–9393 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cowman, A.F. & Karcz, S. Drug resistance and the P-glycoprotein homologues of Plasmodium falciparum. Semin. Cell Biol. 4, 29–35 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Price, R.N. et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364, 438–447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zimmerman, J., Selhub, J. & Rosenberg, I.H. Competitive inhibition of folic acid absorption in rat jejunum by triamterene. J. Lab. Clin. Med. 108, 272–276 (1986).

    CAS  PubMed  Google Scholar 

  39. Montalar, M. et al. Kinetic modeling of triamterene intestinal absorption and its inhibition by folic acid and methotrexate. J. Drug Target. 11, 215–223 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Yuvaniyama, J. et al. Insights into antifolate resistance from malarial DHFR-TS structures. Nat. Struct. Biol. 10, 357–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Mu, J. et al. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol. Microbiol. 49, 977–989 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Trager, W. & Jensen, J.B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, S., Mu, J., Jiang, H. & Su, X.-z. Effects of Plasmodium falciparum mixed infections on in vitro antimalarial drug tests and genotyping. Am. J. Trop. Med. Hyg. 79, 178–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Mu, J. et al. Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature 418, 323–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Broman, K.W., Wu, H., Sen, S. & Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Divisions of Intramural Research at the National Institute of Allergy and Infectious Diseases, and by the National Human Genome Research Institute and the NIH Roadmap for Medical Research, all at the US National Institutes of Health. We thank J. Sa, J. Mu, L. Jiang, D. Raj and M.J. López Barragán for help in drug assays; P. Shinn and D. VanLeer for compound management; D. Leja for assistance in artworks and NIAID intramural editor B.R. Marshall for assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. performed drug assay qHTS, parasite culture and data analysis; R.L.J. performed assay optimization, qHTS and data analysis and helped write the manuscript; J.W. performed qHTS; R.H. performed data analysis; H.J. performed drug assays; K.H. performed progeny cloning and helped write the manuscript; D.A.F. transfected parasites and helped write the manuscript; T.E.W. produced progeny and helped write the manuscript; C.P.A. and J.I. planned the project and helped write the manuscript; X.-z.S. conceived the project, analyzed data and helped write the manuscript.

Corresponding author

Correspondence to Xin-zhuan Su.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–13 (PDF 1271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Johnson, R., Huang, R. et al. Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum. Nat Chem Biol 5, 765–771 (2009). https://doi.org/10.1038/nchembio.215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing