Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations

Abstract

Rumi O-glucosylates the EGF repeats of a growing list of proteins essential in metazoan development, including Notch. Rumi is essential for Notch signaling, and Rumi dysregulation is linked to several human diseases. Despite Rumi's critical roles, it is unknown how Rumi glucosylates a serine of many but not all EGF repeats. Here we report crystal structures of Drosophila Rumi as binary and ternary complexes with a folded EGF repeat and/or donor substrates. These structures provide insights into the catalytic mechanism and show that Rumi recognizes structural signatures of the EGF motif, the U-shaped consensus sequence, C-X-S-X-(P/A)-C and a conserved hydrophobic region. We found that five Rumi mutations identified in cancers and Dowling–Degos disease are clustered around the enzyme active site and adversely affect its activity. Our study suggests that loss of Rumi activity may underlie these diseases, and the mechanistic insights may facilitate the development of modulators of Notch signaling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overall structure of dRumi complexed with hFA9 EGF repeat.
Figure 2: Interactions between dRumi and EGF repeat.
Figure 3: Rumi recognizes conserved 3D features of EGF repeats with diverse primary sequences.
Figure 4: Reaction mechanism revealed by two ternary complexes of dRumi.
Figure 5: Disease-related Rumi mutants adversely affect enzyme activity.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. 1

    Rana, N.A. & Haltiwanger, R.S. Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr. Opin. Struct. Biol. 21, 583–589 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Kopan, R. & Ilagan, M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Acar, M. et al. Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132, 247–258 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Fernandez-Valdivia, R. et al. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 138, 1925–1934 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Leonardi, J., Fernandez-Valdivia, R., Li, Y.D., Simcox, A.A. & Jafar-Nejad, H. Multiple O-glucosylation sites on Notch function as a buffer against temperature-dependent loss of signaling. Development 138, 3569–3578 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Lee, T.V. et al. Negative regulation of notch signaling by xylose. PLoS Genet. 9, e1003547 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Haltom, A.R. et al. The protein O-glucosyltransferase Rumi modifies eyes shut to promote rhabdomere separation in Drosophila. PLoS Genet. 10, e1004795 (2014).

    Article  Google Scholar 

  8. 8

    Ramkumar, N. et al. Protein O-glucosyltransferase 1 (POGLUT1) promotes mouse gastrulation through modification of the apical polarity protein CRUMBS2. PLoS Genet. 11, e1005551 (2015).

    Article  Google Scholar 

  9. 9

    Thakurdas, S.M. et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology 63, 550–565 (2016).

    CAS  Article  Google Scholar 

  10. 10

    Basmanav, F.B. et al. Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease. Am. J. Hum. Genet. 94, 135–143 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Lazarus, M.B. et al. Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nat. Chem. Biol. 8, 966–968 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Lizak, C., Gerber, S., Numao, S., Aebi, M. & Locher, K.P. X-ray structure of a bacterial oligosaccharyltransferase. Nature 474, 350–355 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Lazarus, M.B. et al. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science 342, 1235–1239 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Schimpl, M. et al. O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nat. Chem. Biol. 8, 969–974 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Vasudevan, D. & Haltiwanger, R.S. Novel roles for O-linked glycans in protein folding. Glycoconj. J. 31, 417–426 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Chen, C.I. et al. Structure of human POFUT2: insights into thrombospondin type 1 repeat fold and O-fucosylation. EMBO J. 31, 3183–3197 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Lira-Navarrete, E. et al. Structural insights into the mechanism of protein O-fucosylation. PLoS One 6, e25365 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Valero-González, J. et al. A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2. Nat. Chem. Biol. 12, 240–246 (2016).

    Article  Google Scholar 

  21. 21

    Yu, H. et al. Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nat. Chem. Biol. 11, 847–854 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Wouters, M.A. et al. Evolution of distinct EGF domains with specific functions. Protein Sci. 14, 1091–1103 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Takeuchi, H., Kantharia, J., Sethi, M.K., Bakker, H. & Haltiwanger, R.S. Site-specific O-glucosylation of the epidermal growth factor-like (EGF) repeats of notch: efficiency of glycosylation is affected by proper folding and amino acid sequence of individual EGF repeats. J. Biol. Chem. 287, 33934–33944 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Liu, Q. et al. Structures from anomalous diffraction of native biological macromolecules. Science 336, 1033–1037 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Larivière, L., Sommer, N. & Morera, S. Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase. J. Mol. Biol. 352, 139–150 (2005).

    Article  Google Scholar 

  27. 27

    Takeuchi, H. et al. Rumi functions as both a protein O-glucosyltransferase and a protein O-xylosyltransferase. Proc. Natl. Acad. Sci. USA 108, 16600–16605 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Xu, A., Lei, L. & Irvine, K.D. Regions of Drosophila Notch that contribute to ligand binding and the modulatory influence of Fringe. J. Biol. Chem. 280, 30158–30165 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Rana, N.A. et al. O-glucose trisaccharide is present at high but variable stoichiometry at multiple sites on mouse Notch1. J. Biol. Chem. 286, 31623–31637 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Breton, C., Fournel-Gigleux, S. & Palcic, M.M. Recent structures, evolution and mechanisms of glycosyltransferases. Curr. Opin. Struct. Biol. 22, 540–549 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Larivière, L., Gueguen-Chaignon, V. & Morera, S. Crystal structures of the T4 phage beta-glucosyltransferase and the D100A mutant in complex with UDP-glucose: glucose binding and identification of the catalytic base for a direct displacement mechanism. J. Mol. Biol. 330, 1077–1086 (2003).

    Article  Google Scholar 

  33. 33

    Ntziachristos, P., Lim, J.S., Sage, J. & Aifantis, I. From fly wings to targeted cancer therapies: a centennial for Notch signaling. Cancer Cell 25, 318–334 (2014).

    CAS  Article  Google Scholar 

  34. 34

    Rampias, T. et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat. Med. 20, 1199–1205 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Klinakis, A. et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473, 230–233 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  Google Scholar 

  37. 37

    Wang, N.J. et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 108, 17761–17766 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Jonusiene, V. et al. Down-regulated expression of Notch signaling molecules in human endometrial cancer. Med. Oncol. 30, 438 (2013).

    Article  Google Scholar 

  40. 40

    Hanneken, S. et al. [Galli-Galli disease. Clinical and histopathological investigation using a case series of 18 patients]. Hautarzt. 62, 842–851 (2011).

    CAS  Article  Google Scholar 

  41. 41

    Mauerer, A., Betz, R.C., Pasternack, S.M., Landthaler, M. & Hafner, C. Generalized solar lentigines in a patient with a history of radon exposure. Dermatology 221, 206–210 (2010).

    Article  Google Scholar 

  42. 42

    Andersson, E.R. & Lendahl, U. Therapeutic modulation of Notch signalling—are we there yet? Nat. Rev. Drug Discov. 13, 357–378 (2014).

    CAS  Article  Google Scholar 

  43. 43

    Rizzo, P. et al. Rational targeting of Notch signaling in cancer. Oncogene 27, 5124–5131 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    CAS  Article  Google Scholar 

  46. 46

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  Article  Google Scholar 

  47. 47

    Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  49. 49

    Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).

    CAS  Article  Google Scholar 

  51. 51

    Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Pannu, N.S., Murshudov, G.N., Dodson, E.J. & Read, R.J. Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr. D Biol. Crystallogr. 54, 1285–1294 (1998).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Li and Haltiwanger labs for critical comments on this work, as well as S. Singh Johar for technical assistance. The work was supported by the NIH (grants GM061126 (to R.S.H.) and AG029979 (to H.L.)) and SBU–BNL (seed grant to R.S.H. and H.L.). We acknowledge access to beamlines X25, X29 and X4A at NSLS, Brookhaven National Laboratory and LRL-CAT at APS, Argonne National Laboratory, and we thank the staff at these beamlines. NSLS and APS were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract nos. DE-AC02-98CH10886 and DE-AC02-06CH11357, respectively. Use of the Lilly Research Laboratories Collaborative Access Team (LRL-CAT) beamline at Sector 31 of the Advanced Photon Source was provided by Eli Lilly Company, which operates the facility. The results published here are in part based on data generated by the TCGA Research Network (http://cancergenome.nih.gov/). H.L. dedicates this work to the loving memory of his son Paul J. Li.

Author information

Affiliations

Authors

Contributions

H.Y., H.T., R.S.H. and H.L. designed the research. H.Y. prepared the protein complexes, performed crystallization and solved the structures. H.Y. and Q.L. collected and processed the sulfur-SAD data. H.Y. and H.L. analyzed the structures. H.T., M.T. and J.K. expressed and purified proteins and mutants and performed the enzymatic assays and mass spectrometry. H.Y., H.T., R.S.H. and H.L. designed the mutants, analyzed the mutant data and carried out the cancer-related analysis. H.Y. prepared the initial draft of the manuscript, and H.Y., H.T., R.S.H. and H.L. wrote the paper with input from all other authors.

Corresponding authors

Correspondence to Robert S Haltiwanger or Huilin Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8 and Supplementary Tables 1–3. (PDF 3304 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Takeuchi, H., Takeuchi, M. et al. Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations. Nat Chem Biol 12, 735–740 (2016). https://doi.org/10.1038/nchembio.2135

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing