Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Small-molecule binding of the axin RGS domain promotes β-catenin and Ras degradation


Both the Wnt/β-catenin and Ras pathways are aberrantly activated in most human colorectal cancers (CRCs) and interact cooperatively in tumor promotion. Inhibition of these signaling may therefore be an ideal strategy for treating CRC. We identified KY1220, a compound that destabilizes both β-catenin and Ras, via targeting the Wnt/β-catenin pathway, and synthesized its derivative KYA1797K. KYA1797K bound directly to the regulators of G-protein signaling domain of axin, initiating β-catenin and Ras degradation through enhancement of the β-catenin destruction complex activating GSK3β. KYA1797K effectively suppressed the growth of CRCs harboring APC and KRAS mutations, as shown by various in vitro studies and by in vivo studies using xenograft and transgenic mouse models of tumors induced by APC and KRAS mutations. Destabilization of both β-catenin and Ras via targeting axin is a potential therapeutic strategy for treatment of CRC and other type cancers activated Wnt/β-catenin and Ras pathways.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Identification and characterization of KY1220, a small molecule that destabilizes both β-catenin and Ras.
Figure 2: Identification of KYA1797K, a derivative of KY1220 with improved inhibitory activity for Wnt/β-catenin signaling.
Figure 3: Identification of a target protein of KYA1797K.
Figure 4: Binding of KYA1797K to the axin-RGS domain, and its role in the degradation of β-catenin and Ras via GSK3β activation.
Figure 5: Inhibitory effects of KYA1797K on cell proliferation via degradation of β-catenin and Ras.
Figure 6: Effects of KYA1797K on the growth of intestinal tumors harboring both K-Ras and APC mutations.


  1. Hawk, E.T. & Levin, B. Colorectal cancer prevention. J. Clin. Oncol. 23, 378–391 (2005).

    Article  Google Scholar 

  2. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  Google Scholar 

  3. Waldner, M.J. & Neurath, M.F. The molecular therapy of colorectal cancer. Mol. Aspects Med. 31, 171–178 (2010).

    Article  CAS  Google Scholar 

  4. Chung, D.C. The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology 119, 854–865 (2000).

    Article  CAS  Google Scholar 

  5. Zhang, B. et al. β-Catenin and ras oncogenes detect most human colorectal cancer. Clin. Cancer Res. 9, 3073–3079 (2003).

    CAS  PubMed  Google Scholar 

  6. Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  7. Bos, J.L. et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293–297 (1987).

    Article  CAS  Google Scholar 

  8. Brink, M. et al. K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 24, 703–710 (2003).

    Article  CAS  Google Scholar 

  9. Janssen, K.P. et al. APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 131, 1096–1109 (2006).

    Article  CAS  Google Scholar 

  10. D'Abaco, G.M., Whitehead, R.H. & Burgess, A.W. Synergy between Apc min and an activated ras mutation is sufficient to induce colon carcinomas. Mol. Cell. Biol. 16, 884–891 (1996).

    Article  CAS  Google Scholar 

  11. Luo, F. et al. Mutated K-ras(Asp12) promotes tumourigenesis in Apc(Min) mice more in the large than the small intestines, with synergistic effects between K-ras and Wnt pathways. Int. J. Exp. Pathol. 90, 558–574 (2009).

    Article  CAS  Google Scholar 

  12. Fearon, E.R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  Google Scholar 

  13. Sansom, O.J. et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc. Natl. Acad. Sci. USA 103, 14122–14127 (2006).

    Article  CAS  Google Scholar 

  14. Anastas, J.N. & Moon, R.T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11–26 (2013).

    Article  CAS  Google Scholar 

  15. Guardavaccaro, D. & Clevers, H. Wnt/beta-catenin and MAPK signaling: allies and enemies in different battlefields. Sci. Signal. 5, pe15 (2012).

    Article  Google Scholar 

  16. Jeong, W.J. et al. Ras stabilization through aberrant activation of Wnt/beta-catenin signaling promotes intestinal tumorigenesis. Sci. Signal. 5, ra30 (2012).

    Article  Google Scholar 

  17. Jeon, S.H. et al. Axin inhibits extracellular signal-regulated kinase pathway by Ras degradation via beta-catenin. J. Biol. Chem. 282, 14482–14492 (2007).

    Article  CAS  Google Scholar 

  18. Park, K.S. et al. APC inhibits ERK pathway activation and cellular proliferation induced by RAS. J. Cell Sci. 119, 819–827 (2006).

    Article  CAS  Google Scholar 

  19. Kim, S.E. et al. H-Ras is degraded by Wnt/beta-catenin signaling via beta-TrCP-mediated polyubiquitylation. J. Cell Sci. 122, 842–848 (2009).

    Article  CAS  Google Scholar 

  20. Moon, B.S. et al. Role of oncogenic K-Ras in cancer stem cell activation by aberrant Wnt/beta-catenin signaling. J. Natl. Cancer Inst. 106, djt373 (2014).

    Article  Google Scholar 

  21. Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555–1559 (2009).

    Article  CAS  Google Scholar 

  22. Arnold, H.K. et al. The Axin1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO J. 28, 500–512 (2009).

    Article  CAS  Google Scholar 

  23. Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454 (1996).

    Article  CAS  Google Scholar 

  24. Chen, B. et al. Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    Article  CAS  Google Scholar 

  25. Huang, S.M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article  CAS  Google Scholar 

  26. Taketo, M.M. & Edelmann, W. Mouse models of colon cancer. Gastroenterology 136, 780–798 (2009).

    Article  CAS  Google Scholar 

  27. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

    Article  CAS  Google Scholar 

  28. Loeb, K.R. & Loeb, L.A. Significance of multiple mutations in cancer. Carcinogenesis 21, 379–385 (2000).

    Article  CAS  Google Scholar 

  29. Loeb, L.A., Loeb, K.R. & Anderson, J.P. Multiple mutations and cancer. Proc. Natl. Acad. Sci. USA 100, 776–781 (2003).

    Article  CAS  Google Scholar 

  30. Tortora, G. et al. Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies. Drug Resist. Updat. 10, 81–100 (2007).

    Article  CAS  Google Scholar 

  31. Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507 (2011).

    Article  CAS  Google Scholar 

  32. Kikuchi, A. Roles of axin in the Wnt signalling pathway. Cell. Signal. 11, 777–788 (1999).

    Article  CAS  Google Scholar 

  33. Yun, M.S., Kim, S.E., Jeon, S.H., Lee, J.S. & Choi, K.Y. Both ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. J. Cell Sci. 118, 313–322 (2005).

    Article  CAS  Google Scholar 

  34. Hoeflich, K.P. et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406, 86–90 (2000).

    Article  CAS  Google Scholar 

  35. Mo, H. & Elson, C.E. Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids. J. Nutr. 129, 804–813 (1999).

    Article  CAS  Google Scholar 

  36. Kim, M.Y., Kaduwal, S., Yang, D.H. & Choi, K.Y. Bone morphogenetic protein 4 stimulates attachment of neurospheres and astrogenesis of neural stem cells in neurospheres via phosphatidylinositol 3 kinase-mediated upregulation of N-cadherin. Neuroscience 170, 8–15 (2010).

    Article  CAS  Google Scholar 

  37. Ha, N.C., Tonozuka, T., Stamos, J.L., Choi, H.J. & Weis, W.I. Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Mol. Cell 15, 511–521 (2004).

    Article  CAS  Google Scholar 

  38. Kim, S. & Jho, E.H. The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J. Biol. Chem. 285, 36420–36426 (2010).

    Article  CAS  Google Scholar 

  39. Kolligs, F.T., Hu, G., Dang, C.V. & Fearon, E.R. Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol. Cell. Biol. 19, 5696–5706 (1999).

    Article  CAS  Google Scholar 

  40. Winawer, S. et al. Colorectal cancer screening and surveillance: clinical guidelines and rationale-Update based on new evidence. Gastroenterology 124, 544–560 (2003).

    Article  Google Scholar 

Download references


We thank B. Vogelstein, K.W. Kinzler, J.-W. Oh, N.-C. Ha and E.-h. Jho for providing cells and reagents. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (grants 2016R1A5A1004694, 2015R1A2A1A05001873). Y.-H.C. and S.C. were supported by a BK21 studentship from the NRF.

Author information

Authors and Affiliations



P.-H.C., Y.-H.C., S.-K.L., W.-J.J., B.-S.M., J.-H.Y., S.C., J.Y., M.-Y.K. and S.K. designed and performed the all experiments. J.L. and J.S.Y. synthesized chemicals. P.H.C., J.S.Y., H.-Y.K., D.S.M., H.K., W.L. G.H. and K.-Y.C. performed data analysis. P.-H.C., Y.-H.C., J.Y., J.S.Y., D.S.M., G.H. and K.-Y.C. wrote the manuscript.

Corresponding author

Correspondence to Kang-Yell Choi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–24 and Supplementary Tables 1–4. (PDF 4185 kb)

Supplementary Note

Synthetic procedures. (PDF 346 kb)

Supplementary Data

Source data for Supplementary Figures 2–7, 9 and 11–14. (XLSX 247 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cha, PH., Cho, YH., Lee, SK. et al. Small-molecule binding of the axin RGS domain promotes β-catenin and Ras degradation. Nat Chem Biol 12, 593–600 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer