Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decoding Polo-like kinase 1 signaling along the kinetochore–centromere axis

Abstract

Protein kinase signaling along the kinetochore–centromere axis is crucial to assure mitotic fidelity, yet the details of its spatial coordination are obscure. Here, we examined how pools of human Polo-like kinase 1 (Plk1) within this axis control signaling events to elicit mitotic functions. To do this, we restricted active Plk1 to discrete subcompartments within the kinetochore–centromere axis using chemical genetics and decoded functional and phosphoproteomic signatures of each. We observe distinct phosphoproteomic and functional roles, suggesting that Plk1 exists and functions in discrete pools along this axis. Deep within the centromere, Plk1 operates to assure proper chromosome alignment and segregation. Thus, Plk1 at the kinetochore is a conglomerate of an observable bulk pool coupled with additional functional pools below the threshold of microscopic detection or resolution. Although complex, this multiplicity of locales provides an opportunity to decouple functional and phosphoproteomic signatures for a comprehensive understanding of Plk1's kinetochore functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plk1 signaling at the kinetochore requires binding via its PBD.
Figure 2: High-resolution microscopy identifies discrete localization of endogenous Plk1 and kinetochore-tethered Plk1 constructs along the kinetochore–centromere axis.
Figure 3: 10-plex TMT phosphoproteomic analysis of Plk1 partitioned by locale along the kinetochore-centromere KT axis.
Figure 4: Restricting Plk1 activity along the kinetochore–centromere axis produces distinct phosphoproteomic and functional signatures.
Figure 5: Outer kinetochore tethering of Plk1 fails to restore chromosome alignment or segregation.
Figure 6: Functional and proteomic signatures and a model for Plk1 activity in the kinetochore.

Similar content being viewed by others

References

  1. Godek, K.M., Kabeche, L. & Compton, D.A. Regulation of kinetochore-microtubule attachments through homeostatic control during mitosis. Nat. Rev. Mol. Cell Biol. 16, 57–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. London, N. & Biggins, S. Signalling dynamics in the spindle checkpoint response. Nat. Rev. Mol. Cell Biol. 15, 736–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Foley, E.A. & Kapoor, T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, D., Vader, G., Vromans, M.J.M., Lampson, M.A. & Lens, S.M.A. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Welburn, J.P.I. et al. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell 38, 383–392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barr, F.A., Silljé, H.H.W. & Nigg, E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Arnaud, L., Pines, J. & Nigg, E.A. GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma 107, 424–429 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Elia, A.E.H. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83–95 (2003).

    CAS  PubMed  Google Scholar 

  9. Elia, A.E.H., Cantley, L.C. & Yaffe, M.B. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Hanisch, A., Wehner, A., Nigg, E.A. & Silljé, H.H.W. Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol. Biol. Cell 17, 448–459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, D., Davydenko, O. & Lampson, M.A. Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing. J. Cell Biol. 198, 491–499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lera, R.F. & Burkard, M.E. High mitotic activity of Polo-like kinase 1 is required for chromosome segregation and genomic integrity in human epithelial cells. J. Biol. Chem. 287, 42812–42825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park, J.-E., Erikson, R.L. & Lee, K.S. Feed-forward mechanism of converting biochemical cooperativity to mitotic processes at the kinetochore plate. Proc. Natl. Acad. Sci. USA 108, 8200–8205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burkard, M.E. et al. Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells. PLoS Biol. 7, e1000111 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Qi, W., Tang, Z. & Yu, H. Phosphorylation- and polo-box-dependent binding of Plk1 to Bub1 is required for the kinetochore localization of Plk1. Mol. Biol. Cell 17, 3705–3716 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishino, M. et al. NudC is required for Plk1 targeting to the kinetochore and chromosome congression. Curr. Biol. 16, 1414–1421 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Suijkerbuijk, S.J.E., Vleugel, M., Teixeira, A. & Kops, G.J.P.L. Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev. Cell 23, 745–755 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Elowe, S., Hümmer, S., Uldschmid, A., Li, X. & Nigg, E.A. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 21, 2205–2219 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maia, A.R.R. et al. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J. Cell Biol. 199, 285–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hood, E.A., Kettenbach, A.N., Gerber, S.A. & Compton, D.A. Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol. Biol. Cell 23, 2264–2274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang, Y.H. et al. Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome segregation. Mol. Cell 24, 409–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Park, C.H. et al. Mammalian Polo-like kinase 1 (Plk1) promotes proper chromosome segregation by phosphorylating and delocalizing the PBIP1·CENP-Q complex from kinetochores. J. Biol. Chem. 290, 8569–8581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goto, H. et al. Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nat. Cell Biol. 8, 180–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Chu, Y. et al. Aurora B kinase activation requires survivin priming phosphorylation by PLK1. J. Mol. Cell Biol. 3, 260–267 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Colnaghi, R. & Wheatley, S.P. Liaisons between survivin and Plk1 during cell division and cell death. J. Biol. Chem. 285, 22592–22604 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kothe, M. et al. Selectivity-determining residues in Plk1. Chem. Biol. Drug Des. 70, 540–546 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Cheerambathur, D.K. & Desai, A. Linked in: formation and regulation of microtubule attachments during chromosome segregation. Curr. Opin. Cell Biol. 26, 113–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Oppermann, F.S. et al. Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets. Mol. Cell. Proteomics 11, O111.012351 (2012).

    Article  PubMed  CAS  Google Scholar 

  29. Grosstessner-Hain, K. et al. Quantitative phospho-proteomics to investigate the Polo-like kinase 1-dependent phospho-proteome. Mol. Cell. Proteomics 10, M111.008540 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kettenbach, A.N. et al. Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci. Signal. 4, rs5 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Santamaria, A. et al. The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol. Cell. Proteomics 10, M110.004457 (2011).

    Article  PubMed  CAS  Google Scholar 

  32. Burkard, M.E. et al. Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc. Natl. Acad. Sci. USA 104, 4383–4388 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burkard, M.E., Santamaria, A. & Jallepalli, P.V. Enabling and disabling polo-like kinase 1 inhibition through chemical genetics. ACS Chem. Biol. 7, 978–981 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suzuki, A., Badger, B.L., Wan, X., DeLuca, J.G. & Salmon, E.D. The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper intrakinetochore stretch. Dev. Cell 30, 717–730 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672–684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Domnitz, S.B., Wagenbach, M., Decarreau, J. & Wordeman, L. MCAK activity at microtubule tips regulates spindle microtubule length to promote robust kinetochore attachment. J. Cell Biol. 197, 231–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Honnappa, S. et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell 138, 366–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Phanstiel, D., Unwin, R., McAlister, G.C. & Coon, J.J. Peptide quantification using 8-plex isobaric tags and electron transfer dissociation tandem mass spectrometry. Anal. Chem. 81, 1693–1698 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maney, T., Hunter, A.W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787–801 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carmena, M. et al. The chromosomal passenger complex activates Polo kinase at centromeres. PLoS Biol. 10, e1001250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baumann, C., Körner, R., Hofmann, K. & Nigg, E.A. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128, 101–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Lowery, D.M. et al. Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J. 26, 2262–2273 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang, Y.H. et al. Mammalian polo-like kinase 1-dependent regulation of the PBIP1-CENP-Q complex at kinetochores. J. Biol. Chem. 286, 19744–19757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meppelink, A., Kabeche, L., Vromans, M.J.M., Compton, D.A. & Lens, S.M.A. Shugoshin-1 balances Aurora B kinase activity via PP2A to promote chromosome bi-orientation. Cell Rep. 11, 508–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Foley, E.A., Maldonado, M. & Kapoor, T.M. Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat. Cell Biol. 13, 1265–1271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, D. et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J. Cell Biol. 188, 809–820 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beck, J. et al. Ubiquitylation-dependent localization of PLK1 in mitosis. Nat. Cell Biol. 15, 430–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hornbeck, P.V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Wenger, C.D., Phanstiel, D.H., Lee, M.V., Bailey, D.J. & Coon, J.J. COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA. Proteomics 11, 1064–1074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taus, T. et al. Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10, 5354–5362 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01 GM097245 (to M.E.B.), NIH R01 GM080148 (to J.J.C.), NIH R01 GM024364 (to E.D.S.), Cancer Center Support P30 CA014520, and http://www.Effcansah.com. The authors thank I.M. Cheeseman, S.S. Taylor, and T.J. Yen for contributing reagents, and B.A. Weaver and members of the Burkard laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.F.L. and M.E.B. designed the research. R.F.L., G.K.P., A.S., and J.M.J. performed experiments. R.F.L., G.K.P., A.S., J.M.J., and M.E.B. analyzed the data. M.E.B., J.J.C., and E.D.S. supervised the research. R.F.L. and M.E.B. drafted the manuscript. All authors revised and contributed to the manuscript.

Corresponding author

Correspondence to Mark E Burkard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12 and Supplementary Tables 1–3. (PDF 2968 kb)

Supplementary Data Set 1

Results table listing phosphopeptides encountered by mass spectrometry of Plk1 cell lines labeled with tandem mass tags. A total of 11,407 phosphopeptides were encountered from the 10 cell fractions (5 cell lines A BI- 2536). The raw 10-plex reporter ion intensities of localized phosphopeptide isoforms were log2 transformed and normalized against inhibited Plk1wt (+BI-2536) to obtain the relative phosphopeptide and protein quantitation for each cell line and condition. Terminal columns in the table indicate relative phosphopeptide expression for individual lines after BI-2536 treatment. See Online Methods section for details of analysis. (XLSX 8750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lera, R., Potts, G., Suzuki, A. et al. Decoding Polo-like kinase 1 signaling along the kinetochore–centromere axis. Nat Chem Biol 12, 411–418 (2016). https://doi.org/10.1038/nchembio.2060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2060

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing