Brief Communication | Published:

YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids

Nature Chemical Biology volume 12, pages 215217 (2016) | Download Citation

Abstract

Sulfoquinovose is produced by photosynthetic organisms at a rate of 1010 tons per annum and is degraded by bacteria as a source of carbon and sulfur. We have identified Escherichia coli YihQ as the first dedicated sulfoquinovosidase and the gateway enzyme to sulfoglycolytic pathways. Structural and mutagenesis studies unveiled the sequence signatures for binding the distinguishing sulfonate residue and revealed that sulfoquinovoside degradation is widespread across the tree of life.

  • Compound

    sulfoquinovose

  • Compound

    uridine-5'-diphosphosulfoquinovose

  • Compound

    (S)-2,3-dihydroxypropane-1-sulfonate

  • Compound

    (S)-sulfolactate

  • Compound

    1-sulfoquinovosylglycerol

  • Compound

    potassium 4-nitrophenyl 6-deoxy-6-sulfonato-α-D-glucopyranoside

  • Compound

    4-nitrophenyl α-D-glucopyranoside

  • Compound

    5-fluoro-β-L-idopyranosyl fluoride

  • Compound

    4-nitrophenyl 6-S-acetyl-6-thio-α-D-glucopyranoside

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Referenced accessions

Protein Data Bank

References

  1. 1.

    & Biochem. Soc. Trans. 7, 440–447 (1979).

  2. 2.

    Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 53–75 (1998).

  3. 3.

    et al. Nature 507, 114–117 (2014).

  4. 4.

    , , & Proc. Natl. Acad. Sci. USA 112, E4298–E4305 (2015).

  5. 5.

    Prog. Lipid Res. 50, 234–239 (2011).

  6. 6.

    & Biochim. Biophys. Acta 93, 169–171 (1964).

  7. 7.

    , , , & Appl. Environ. Microbiol. 69, 6434–6441 (2003).

  8. 8.

    , , , & FEMS Microbiol. Lett. 328, 39–45 (2012).

  9. 9.

    , & FEBS Lett. 581, 4519–4522 (2007).

  10. 10.

    et al. Proc. Natl. Acad. Sci. USA 112, 453–457 (2015).

  11. 11.

    & Nature 192, 1186–1187 (1961).

  12. 12.

    , , , & Nucleic Acids Res. 42, D490–D495 (2014).

  13. 13.

    , , & Protein Expr. Purif. 37, 170–179 (2004).

  14. 14.

    , , , & Biochim. Biophys. Acta 1302, 236–240 (1996).

  15. 15.

    , & J. Am. Chem. Soc. 124, 4948–4949 (2002).

  16. 16.

    & J. Am. Chem. Soc. 118, 241–242 (1996).

  17. 17.

    & J. Biol. Chem. 251, 3250–3253 (1976).

  18. 18.

    et al. Eur. J. Biochem. 268, 2270–2280 (2001).

  19. 19.

    , & Acc. Chem. Res. 45, 308–316 (2012).

  20. 20.

    , , & Curr. Opin. Struct. Biol. 28, 1–13 (2014).

  21. 21.

    et al. J. Biol. Chem. 288, 19296–19303 (2013).

  22. 22.

    Protein Expr. Purif. 41, 207–234 (2005).

  23. 23.

    J. Appl. Cryst. 43, 186–190 (2010).

  24. 24.

    Collaborative Computational Project, Number 4. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  25. 25.

    et al. Isr. J. Chem. 53, 199–206 (2013).

  26. 26.

    , , , & Nucleic Acids Res. 38, W529–W533 (2010).

  27. 27.

    The PyMOL Molecular Graphics System version 1.7.4 (Schrödinger, LLC).

  28. 28.

    , , & Acta Crystallogr. D Biol. Crystallogr. 67, 386–394 (2011).

  29. 29.

    et al. Nucleic Acids Res. 36, W465–W469 (2008).

Download references

Acknowledgements

We thank S.G. Withers for the gift of 5-fluoro-β-L-idopyranosyl fluoride and N.A. Williamson for technical assistance. This work was supported by grants from the UK Biotechnology and Biological Sciences Research Council and the European Research Council (AdG-322942 to G.J.D.), the Australian Research Council (to S.J.W.), the Ramaciotti Foundation and the Victorian Endowment for Science Knowledge and Innovation, with additional support from the Australian Cancer Research Foundation and Victorian State Government Operational Infrastructure Support, NHMRC IRIISS grant 9000220 (to E.D.G.-B.). We thank the Diamond Light Source (Didcot, UK) for access to beamlines IO4, IO4-1 and IO2 (proposal number mx-9948).

Author information

Author notes

    • Gaetano Speciale
    •  & Yi Jin

    These authors contributed equally to this work.

Affiliations

  1. School of Chemistry, University of Melbourne, Parkville, Victoria, Australia.

    • Gaetano Speciale
    •  & Spencer J Williams
  2. Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.

    • Gaetano Speciale
    •  & Spencer J Williams
  3. Department of Chemistry, University of York, Heslington, York, UK.

    • Yi Jin
    •  & Gideon J Davies
  4. ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.

    • Ethan D Goddard-Borger
  5. Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.

    • Ethan D Goddard-Borger

Authors

  1. Search for Gaetano Speciale in:

  2. Search for Yi Jin in:

  3. Search for Gideon J Davies in:

  4. Search for Spencer J Williams in:

  5. Search for Ethan D Goddard-Borger in:

Contributions

G.S. synthesized substrate and performed LC/MS analysis. G.S. and E.D.G.-B. cloned, expressed, mutagenized and purified enzymes and performed kinetic analyses. Y.J. performed crystallographic studies and prepared the accompanying figures. Experiments were designed by G.J.D., S.J.W. and E.D.G.-B., who collectively wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ethan D Goddard-Borger.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–7.

  2. 2.

    Supplementary Note

    Synthetic Procedures

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchembio.2023

Further reading