Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Enzymatic transition states and dynamic motion in barrier crossing

Abstract

What are the atomic motions at enzymatic catalytic sites on the timescale of chemical change? Combined experimental and computational chemistry approaches take advantage of transition-state analogs to reveal dynamic motions linked to transition-state formation. QM/MM transition path sampling from reactive complexes provides both temporal and dynamic information for barrier crossing. Fast (femtosecond to picosecond) dynamic motions provide essential links to enzymatic barrier crossing by local or promoting-mode dynamic searches through bond-vibrational space. Transition-state lifetimes are within the femtosecond timescales of bond vibrations and show no manifestations of stabilized, equilibrated complexes. The slow binding and protein conformational changes (microsecond to millisecond) also required for catalysis are temporally decoupled from the fast dynamic motions forming the transition state. According to this view of enzymatic catalysis, transition states are formed by fast, coincident dynamic excursions of catalytic site elements, while the binding of transition-state analogs is the conversion of the dynamic excursions to equilibrated states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transition-state stabilization compared to free energy during an enzymatic reaction.
Figure 2: Transition-state structures of PNP and the effect of remote mutations.
Figure 3: BIEs for [5′-3H]inosine, Immucillin-H and DADMe-Immucillin-H to human PNP.
Figure 4: Transition path sampling studies of catalysis by lactate dehydrogenase.
Figure 5: Steps in the phosphorolysis of guanosine by PNP.
Figure 6: The starting point snapshot from a movie demonstrating protein and reactant motion for barrier crossing in human PNP by transition-path sampling.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pauling, L.C. Molecular architecture and biological reactions. Chem. Eng. News 24, 1375–1377 (1946).

    CAS  Google Scholar 

  2. Wolfenden, R. Transition state analogues for enzyme catalysis. Nature 223, 704–705 (1969).

    CAS  PubMed  Google Scholar 

  3. Hammes-Schiffer, S. & Benkovic, S.J. Relating protein motion to catalysis. Annu. Rev. Biochem. 75, 519–541 (2006).

    CAS  PubMed  Google Scholar 

  4. Gao, J. et al. Mechanisms and free energies of enzymatic reactions. Chem. Rev. 106, 3188–3209 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schramm, V.L. Enzymatic transition state theory and transition state analogue design. J. Biol. Chem. 282, 28297–28300 (2007).

    CAS  PubMed  Google Scholar 

  6. Basner, J.E. & Schwartz, S.D. How enzyme dynamics helps catalyze a chemical reaction in atomic detail: a transition path sampling study. J. Am. Chem. Soc. 127, 13822–13831 (2005). The first report of enzymatic barrier crossing analyzed by transition path sampling.

    CAS  PubMed  Google Scholar 

  7. Benkovic, S.J. & Hammes-Schiffer, S. A perspective on enzyme catalysis. Science 301, 1196–1202 (2003).

    CAS  PubMed  Google Scholar 

  8. Bruice, T.C. A view at the millennium: the efficiency of enzymatic catalysis. Acc. Chem. Res. 35, 139–148 (2002).

    CAS  PubMed  Google Scholar 

  9. Garcia-Viloca, M., Gao, J., Karplus, M. & Truhlar, D.G. How enzymes work: analysis by modern rate theory and computer simulations. Science 303, 186–195 (2004).

    CAS  PubMed  Google Scholar 

  10. Henzler-Wildman, K.A. et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450, 913–916 (2007).

    CAS  PubMed  Google Scholar 

  11. Wolfenden, R. & Snider, M.J. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34, 938–945 (2001).

    CAS  PubMed  Google Scholar 

  12. Biegeleisen, J. & Wolfsberg, M. Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv. Chem. Phys. 1, 15–76 (1958).

    Google Scholar 

  13. Horenstein, B.A. & Schramm, V.L. Electronic nature of the transition state for nucleoside hydrolase. A blueprint for inhibitor design. Biochemistry 32, 20658–20665 (1993).

    Google Scholar 

  14. Schramm, V.L. Enzymatic transition states and transition state analogues. Curr. Opin. Struct. Biol. 15, 604–613 (2005).

    CAS  PubMed  Google Scholar 

  15. Schramm, V.L. Enzymatic transition states: thermodynamics, dynamics and analogue design. Arch. Biochem. Biophys. 433, 13–26 (2005).

    CAS  PubMed  Google Scholar 

  16. Schramm, V.L. Enzymatic transition states and transition state analog design. Annu. Rev. Biochem. 67, 693–720 (1998).

    CAS  PubMed  Google Scholar 

  17. Kline, P.C. & Schramm, V.L. Purine nucleoside phosphorylase. Catalytic mechanism and transition-state analysis of the arsenolysis reaction. Biochemistry 32, 13212–13219 (1993).

    CAS  PubMed  Google Scholar 

  18. Lewandowicz, A. & Schramm, V.L. Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases. Biochemistry 43, 1458–1468 (2004). Isozymes of purine nucleoside phosphorylase with nearly identical catalytic site structures are found to form different transition states, linking protein architecture to transition state formation.

    CAS  PubMed  Google Scholar 

  19. Singh, V., Lee, J.E., Núñez, S., Howell, P.L. & Schramm, V.L. Transition state structure of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues. Biochemistry 44, 11647–11659 (2005).

    CAS  PubMed  Google Scholar 

  20. Gutierrez, J.A. et al. Picomolar inhibitors as transition state probes of 5′-methylthioadenosine nucleosidases. ACS Chem. Biol. 2, 725–734 (2007).

    CAS  PubMed  Google Scholar 

  21. Murkin, A.S., Clinch, K., Mason, J.M., Tyler, P.C. & Schramm, V.L. Immucillins in custom catalytic-site cavities. Bioorg. Med. Chem. Lett. 18, 5900–5903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gutierrez, J.A. et al. Transition state analogues of 5′-methylthioadenosine nucleosidase disrupt quorum sensing. Nat. Chem. Biol. 5, 251–257 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).

    CAS  Google Scholar 

  24. Miller, W.H. Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants. J. Chem. Phys. 61, 1823–1834 (1974).

    CAS  Google Scholar 

  25. Pechukas, P. & McLafferty, F.J. On transition state theory and the classical mechanics of collinear collisions. J. Chem. Phys. 58, 1622–1625 (1972).

    Google Scholar 

  26. Boehr, D.D., Dyson, H.J. & Wright, P.E. An NMR perspective on enzyme dynamics. Chem. Rev. 106, 3055–3079 (2006).

    CAS  PubMed  Google Scholar 

  27. Hammes-Schiffer, S. Kinetic isotope effects for proton-coupled electron transfer reactions. in Isotope Effects in Chemistry and Biology (eds. Kohen, A. & Limbach, H.-H.) 499–519 (CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA, 2006).

    Google Scholar 

  28. Xu, Y., Yamamoto, N. & Janda, K.D. Catalytic antibodies: hapten design strategies and screening methods. Bioorg. Med. Chem. 12, 5247–5268 (2004).

    CAS  PubMed  Google Scholar 

  29. Alexandrova, A.N., Röthlisberger, D., Baker, D. & Jorgensen, W.L. Catalytic mechanism and performance of computationally designed enzymes for Kemp elimination. J. Am. Chem. Soc. 130, 15907–15915 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lewis, C.A. Jr. & Wolfenden, R. Uroporphyrinogen decarboxylation as a benchmark for the catalytic proficiency of enzymes. Proc. Natl. Acad. Sci. USA 105, 17328–17333 (2008).

    CAS  PubMed  Google Scholar 

  31. Quaytman, S.L. & Schwartz, S.D. The reaction coordinate of an enzymatic reaction: TPS studies of lactate dehydrogenase. Proc. Natl. Acad. Sci. USA 104, 12253–12258 (2007).

    CAS  PubMed  Google Scholar 

  32. Núñez, S., Antoniou, D., Schramm, V.L. & Schwartz, S.D. Promoting vibrations in human purine nucleoside phosphorylase: a molecular dynamics and hybrid quantum mechanical/molecular mechanical study. J. Am. Chem. Soc. 126, 15720–15729 (2004).

    PubMed  Google Scholar 

  33. Saen-Oon, S., Quaytman-Machleder, S., Schramm, V.L. & Schwartz, S.D. Atomic detail of chemical transformation at the transition state of an enzymatic reaction. Proc. Natl. Acad. Sci. USA 105, 16543–16548 (2008).

    CAS  PubMed  Google Scholar 

  34. Henzler-Wildman, K.A. et al. Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838–844 (2007).

    CAS  PubMed  Google Scholar 

  35. Cleland, W.W. The use of isotope effects to determine enzyme mechanisms. Arch. Biochem. Biophys. 433, 2–12 (2005).

    CAS  PubMed  Google Scholar 

  36. Schowen, R.L. Hydrogen bonds, transition-state stabilization and enzyme catalysis. in Isotope Effects in Chemistry and Biology (eds. Kohen, A. & Limbach, H.-H.) 765–792 (CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA, 2006).

    Google Scholar 

  37. Karsten, W.E. & Cook, P.F. Substrate and pH dependence of isotope effects in enzyme catalyzed reactions. in Isotope Effects in Chemistry and Biology (eds. Kohen, A. & Limbach, H.-H.) 793–810 (CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA, 2006).

    Google Scholar 

  38. Taylor Ringia, E.A. et al. L. Transition state analogue discrimination by related purine nucleoside phosphorylases. J. Am. Chem. Soc. 128, 7126–7127 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Saen-Oon, S., Ghanem, M., Schramm, V.L. & Schwartz, S.D. Remote mutations and active site dynamics correlate with catalytic properties of purine nucleoside phosphorylase. Biophys. J. 94, 4078–4088 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Luo, M., Li, L. & Schramm, V.L. Remote mutations alter transition-state structure of human purine nucleoside phosphorylase. Biochemistry 47, 2565–2576 (2008). Mutations 25–40 Å from the catalytic site are shown to alter transition state structure as established by kinetic isotope effects and binding of transition state analogs.

    CAS  PubMed  Google Scholar 

  41. Fedorov, A. et al. Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis. Biochemistry 40, 853–860 (2001).

    CAS  PubMed  Google Scholar 

  42. Vocadlo, D.J., Davies, G.J., Laine, R. & Withers, S.G. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412, 835–838 (2001).

    CAS  PubMed  Google Scholar 

  43. Bianchet, M.A. et al. Electrostatic guidance of glucosyl cation migration along the reaction coordinate of uracil DNA glycosylase. Biochemistry 42, 12455–12460 (2003).

    CAS  PubMed  Google Scholar 

  44. Jencks, W.P. When is an intermediate not an intermediate? Enforced mechanisms of general acid-base, catalyzed, carbocation, carbanion, and ligand exchange reaction. Acc. Chem. Res. 13, 161–169 (1980).

    CAS  Google Scholar 

  45. Liu, Q. et al. Covalent and noncovalent intermediates of an NAD utilizing enzyme, human CD38. Chem. Biol. 15, 1068–1078 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Parikh, S.S., Putnam, C.D. & Tainer, J.A. Lessons learned from structural results on uracil-DNA glycosylase. Mutat. Res. 460, 183–199 (2000).

    CAS  PubMed  Google Scholar 

  47. Lewis, B.E. & Schramm, V.L. Enzymatic binding isotope effects and the interaction of glucose with hexokinase. In Isotope Effects in Chemistry and Biology (Kohen, A. & Limbach, H.-H., eds.) 1019–1053 (CRC Taylor & Francis, Boca Raton, Florida, USA, 2006).

    Google Scholar 

  48. Murkin, A.S., Tyler, P.C. & Schramm, V.L. Transition-state interactions revealed in purine nucleoside phosphorylase by binding isotope effects. J. Am. Chem. Soc. 130, 2166–2167 (2008).

    CAS  PubMed  Google Scholar 

  49. Miller, B.G. & Wolfenden, R. Catalytic proficiency: the unusual case of OMP decarboxylase. Annu. Rev. Biochem. 71, 847–885 (2002).

    CAS  PubMed  Google Scholar 

  50. Murkin, A.S. et al. Neighboring group participation in the transition state of human purine nucleoside phosphorylase. Biochemistry 46, 5038–5049 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bolhuis, P.G., Chandler, D., Dellago, C. & Geissler, P.L. Transition path sampling: throwing ropes over rough mountain passes in the dark. Annu. Rev. Phys. Chem. 53, 291–318 (2002). Transition path sampling is described as a way to probe, in an unbiased fashion, the nature of barrier crossing in condensed-phase reactions.

    CAS  PubMed  Google Scholar 

  52. Dellago, C., Bolhuis, P.G. & Chandler, D. Efficient transition path sampling: application to Lennard-Jones cluster rearrangements. J. Chem. Phys. 108, 9236–9245 (1998).

    CAS  Google Scholar 

  53. Caratzoulas, S. & Schwartz, S.D. A computational method to discover the existence of promoting vibrations for chemical reactions in condensed phases. J. Chem. Phys. 114, 2910–2918 (2001).

    CAS  Google Scholar 

  54. Crehuet, R. & Field, M.J. A transition path sampling study of the reaction catalyzed by chorismate mutase. J. Phys. Chem. B 111, 5708–5718 (2007).

    CAS  PubMed  Google Scholar 

  55. Brooks, B.R. et al. CHARMm: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    CAS  Google Scholar 

  56. Deng, H. et al. On the pathway of forming enzymatically productive ligand-protein complexes in lactate dehydrogenase. Biophys. J. 95, 804–813 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Deng, H., Lewandowicz, A., Schramm, V.L. & Callender, R. Activating the phosphate nucleophile at the catalytic site of purine nucleoside phosphorylase: a vibrational spectroscopic study. J. Am. Chem. Soc. 126, 9516–9517 (2004).

    CAS  PubMed  Google Scholar 

  58. Deng, H., Murkin, A.S. & Schramm, V.L. Phosphate activation in the ground state of purine nucleoside phosphorylase. J. Am. Chem. Soc. 128, 7765–7771 (2006).

    CAS  PubMed  Google Scholar 

  59. Hu, J., Ma, A. & Dinner, A.R. A two-step nucleotide-flipping mechanism enables kinetic discrimination of DNA lesions by AGT. Proc. Natl. Acad. Sci. USA 105, 4615–4620 (2008).

    CAS  PubMed  Google Scholar 

  60. Chopra, M., Reddy, A.S., Abbott, N.L. & de Pablo, J.J. Folding of polyglutamine chains. J. Chem. Phys. 129, 135102 (2008).

    PubMed  Google Scholar 

  61. Juraszek, J. & Bolhuis, P.G. Rate constant and reaction coordinate of Trp-cage folding in explicit water. Biophys. J. 95, 4246–4257 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma, L. & Cui, Q. Activation mechanism of a signaling protein at atomic resolution from advanced computations. J. Am. Chem. Soc. 129, 10261–10268 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pool, R. & Bolhuis, P.G. Sampling the kinetic pathways of a micelle fusion and fission transition. J. Chem. Phys. 126, 244703 (2007).

    PubMed  Google Scholar 

  64. Chatfield, D.C., Friedman, R.S., Schwenke, D.W. & Truhlar, D.G. Control of chemical reactivity by quantized transition states. J. Phys. Chem. 96, 2414–2421 (1992).

    CAS  Google Scholar 

  65. Marcus, R.A. Enzymatic catalysis and transfers in solution. I. Theory and computations, a unified view. J. Chem. Phys. 125, 194504 (2006).

    CAS  PubMed  Google Scholar 

  66. Watney, J.B. & Hammes-Schiffer, S. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase. J. Phys. Chem. B 110, 10130–10138 (2006).

    CAS  PubMed  Google Scholar 

  67. Wong, K.F., Selzer, T., Benkovic, S.J. & Hammes-Schiffer, S. Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 102, 6807–6812 (2005).

    CAS  PubMed  Google Scholar 

  68. Hammes-Schiffer, S. Impact of enzyme motion on activity. Biochemistry 41, 13335–13343 (2002).

    CAS  PubMed  Google Scholar 

  69. Agarwal, P.K., Billeter, S.R., Rajagopalan, P.T., Benkovic, S.J. & Hammes-Schiffer, S. Network of coupled promoting motions in enzyme catalysis. Proc. Natl. Acad. Sci. USA 99, 2794–2799 (2002).

    CAS  PubMed  Google Scholar 

  70. Hatcher, E., Soudackov, A.V. & Hammes-Schiffer, S. Proton-coupled electron transfer in soybean lipoxygenase. J. Am. Chem. Soc. 126, 5763–5775 (2004).

    CAS  PubMed  Google Scholar 

  71. Knapp, M.J. & Klinman, J.P. Environmentally coupled hydrogen tunneling. Linking catalysis to dynamics. Eur. J. Biochem. 269, 3113–3121 (2002).

    CAS  PubMed  Google Scholar 

  72. Garcia-Viloca, M., Truhlar, D.G. & Gao, J. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by DHFR. Biochemistry 42, 13558–13575 (2003).

    CAS  PubMed  Google Scholar 

  73. Liu, H. & Warshel, A. The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies. Biochemistry 46, 6011–6025 (2007).

    PubMed  Google Scholar 

  74. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    CAS  PubMed  Google Scholar 

  75. Ruiz-Pernía, J.J., Tuñón, I., Moliner, V., Hynes, J.T. & Roca, M. Dynamic effects on reaction rates in a Michael addition catalyzed by chalcone isomerase. Beyond the frozen environment approach. J. Am. Chem. Soc. 130, 7477–7488 (2008).

    PubMed  Google Scholar 

  76. Roca, M., Moliner, V., Tuñón, I. & Hynes, J.T. Coupling between protein and reaction dynamics in enzymatic processes: application of Grote-Hynes Theory to catechol O-methyltransferase. J. Am. Chem. Soc. 128, 6186–6193 (2006).

    CAS  PubMed  Google Scholar 

  77. Klinman, J.P. An integrated model for enzyme catalysis emerges from studies of hydrogen tunneling. Chem. Phys. Lett. 471, 179–193 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hay, S., Pudney, C.R., Sutcliffe, M.J. & Scrutton, N.S. Solvent as a probe of active site motion and chemistry during the hydrogen tunnelling reaction in morphinone reductase. ChemPhysChem 15, 1875–1881 (2008).

    Google Scholar 

  79. Hay, S. et al. Barrier compression enhances an enzymatic hydrogen-transfer reaction. Angew. Chem. Int. Edn Engl. 48, 1452–1454 (2009).

    CAS  Google Scholar 

  80. Johannissen, L.O., Scrutton, N.S. & Sutcliffe, M.J. The enzyme aromatic amine dehydrogenase induces a substrate conformation crucial for promoting vibration that significantly reduces the effective potential energy barrier to proton transfer. J. R. Soc. Interface 5 (Suppl. 3), S225–S232 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kanaan, N., Martí, S., Moliner, V. & Kohen, A. QM/MM study of thymidylate synthase: enzymatic motions and the temperature dependence of the rate limiting step. J. Phys. Chem. A 113, 2176–2182 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bandaria, J.N., Dutta, S., Hill, S.E., Kohen, A. & Cheatum, C.M. Fast enzyme dynamics at the active site of formate dehydrogenase. J. Am. Chem. Soc. 130, 22–23 (2008).

    CAS  PubMed  Google Scholar 

  83. Wang, L., Goodey, N.M., Benkovic, S.J. & Kohen, A. Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 103, 15753–15758 (2006).

    CAS  PubMed  Google Scholar 

  84. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    CAS  PubMed  Google Scholar 

  85. Zhang, X. & Houk, K.N. Why enzymes are proficient catalysts: beyond the Pauling paradigm. Acc. Chem. Res. 38, 379–385 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vern L Schramm.

Ethics declarations

Competing interests

V.L.S. is a consultant to, and shareholder in, BioCryst Pharmaceuticals Inc., which is conducting clinical trials with ImmH (tradename Forodesine) and DADMe-ImmH (tradename BCX-4298) under license from the Albert Einstein College of Medicine, Bronx, New York, USA, and Industrial Research Inc., Lower Hutt, New Zealand.

Supplementary information

Supplementary Movie 1

A snapshot from a movie of the 250 fsec period demonstrating protein and reactant motion for barrier crossing in human PNP by TPS. The movie begins with guanosine and phosphate as reactants and the transition state barrier is crossed during this 250 fsec movie followed by automatic movie recycling. The time for the commitment probability to go from zero to unity (Figure 5E) is shown in the movie by migration of C1' of the ribosyl group from guanine (blue) to the phosphate oxygen (red and green). The transition state lifetime is the time when reactants show equal probability of converting to product or reactant (0.5 probability in Figure 5E). The transition state lifetime in the movie is 10 fsec. For comparison, each stretching mode of the 5'-OH bond (in H-bond contact to HSE257:CA) is approximately 9 fsec. At the transition state, C1' is equidistant from N9 of guanine and the phosphate oxygen. Protein conformational changes involved in reactant (S) binding, loop motion and catalytic site organization typically requires µsec to msec and a similar time is needed to clear the catalytic site of products. As 1 msec = 1012 fsec, conformational changes leading to barrier crossing are very slow relative to transition state lifetime. The promoting vibrations include local catalytic site motions occurring on the fsec time scale, and are active throughout the 1 to 10 msec organizational period. The probability of reaching the transition state barrier is based on dynamic probability of correct slow and fast conformational states. With permission of the publisher33. (MPG 1723 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, S., Schramm, V. Enzymatic transition states and dynamic motion in barrier crossing. Nat Chem Biol 5, 551–558 (2009). https://doi.org/10.1038/nchembio.202

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing