Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH

Abstract

Recombinant polypeptides and protein domains containing two cysteine pairs located distal in primary sequence but proximal in the native folded or assembled state are labeled selectively in vitro and in mammalian cells using the profluorescent biarsenical reagents FlAsH-EDT2 and ReAsH-EDT2. This strategy, termed bipartite tetracysteine display, enables the detection of protein-protein interactions and alternative protein conformations in live cells. As proof of principle, we show that the equilibrium stability and fluorescence intensity of polypeptide–biarsenical complexes correlates with the thermodynamic stability of the protein fold or assembly. Destabilized protein variants form less stable and less bright biarsenical complexes, which allows discrimination of live cells expressing folded polypeptide and protein domains from those containing disruptive point mutations. Bipartite tetracysteine display may provide a means to detect early protein misfolding events associated with Alzheimer's disease, Parkinson's disease and cystic fibrosis; it may also enable high-throughput screening of compounds that stabilize discrete protein folds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intra- and intermolecular bipartite tetracysteine display using FlAsH-EDT2 and ReAsH-EDT2.
Figure 2: Equilibrium binding of FlAsH and ReAsH to polypeptides or protein domains containing a bipartite tetracysteine motif.
Figure 3: Effect of FlAsH binding on the secondary structures of wild-type and variant polypeptides and protein domains.
Figure 4: Misfolded polypeptides and their assemblies bind FlAsH and ReAsH with diminished affinities.
Figure 5: Differentiation of folded and misfolded proteins and assemblies in living cells with ReAsH-EDT2.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Shimomura, O., Johnson, F.H. & Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59, 223–239 (1962).

    Article  CAS  Google Scholar 

  2. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G. & Cormier, M.J. Primary structure of the Aequorea victoria green fluorescent protein. Gene 111, 229–233 (1992).

    Article  CAS  Google Scholar 

  3. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  4. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  Google Scholar 

  5. Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23, 605–613 (2005).

    Article  CAS  Google Scholar 

  6. Willemse, M., Janssen, E., de Lange, F., Wieringa, B. & Fransen, J. ATP and FRET – a cautionary note. Nat. Biotechnol. 25, 170–172 (2007).

    Article  CAS  Google Scholar 

  7. Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  Google Scholar 

  8. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  9. Martin, B.R., Giepmans, B.N.G., Adams, S.R. & Tsien, R.Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314 (2005).

    Article  CAS  Google Scholar 

  10. Gaietta, G.M. et al. Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc. Natl. Acad. Sci. USA 103, 17777–17782 (2006).

    Article  CAS  Google Scholar 

  11. Nakanishi, J., Takarada, T., Yunoki, S., Kikuchi, Y. & Maeda, M. FRET-based monitoring of conformational change of the β2 adrenergic receptor in living cells. Biochem. Biophys. Res. Commun. 343, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  12. Hoffmann, C. et al. A FlAsH-based FRET approach to determine G protein - coupled receptor activation in living cells. Nat. Methods 2, 171–176 (2005).

    Article  CAS  Google Scholar 

  13. Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).

    Article  CAS  Google Scholar 

  14. Andresen, M., Schmitz-Salue, R. & Jakobs, S. Short tetracysteine tags to β-tubulin demonstrate the significance of small labels for live cell imaging. Mol. Biol. Cell 15, 5616–5622 (2004).

    Article  CAS  Google Scholar 

  15. Dyachok, O., Isakov, Y., Sagetorp, J. & Tengholm, A. Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439, 349–352 (2006).

    Article  CAS  Google Scholar 

  16. Enninga, J., Mounier, J., Sansonetti, P. & Tran Van Nhieu, G. Secretion of type III effectors into host cells in real time. Nat. Methods 2, 959–965 (2005).

    Article  CAS  Google Scholar 

  17. Ignatova, Z. & Gierasch, L.M. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl. Acad. Sci. USA 101, 523–528 (2004).

    Article  CAS  Google Scholar 

  18. Ignatova, Z. & Gierasch, L.M. Aggregation of a slow-folding mutant of a beta-clam protein proceeds through a monomeric nucleus. Biochemistry 44, 7266–7274 (2005).

    Article  CAS  Google Scholar 

  19. Ignatova, Z. & Gierasch, L.M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl. Acad. Sci. USA 103, 13357–13361 (2006).

    Article  CAS  Google Scholar 

  20. Blundell, T.L., Pitts, J.E., Tickle, I.J., Wood, S.P. & Wu, C.W. X-ray analysis (1.4 Å resolution) of avian pancreatic-polypeptide - small globular protein hormone. Proc. Natl. Acad. Sci. USA 78, 4175–4179 (1981).

    Article  CAS  Google Scholar 

  21. Cochran, A.G., Skelton, N.J. & Starovasnik, M.A. Tryptophan zippers: stable, monomeric β-hairpins. Proc. Natl. Acad. Sci. USA 98, 5578–5583 (2001).

    Article  CAS  Google Scholar 

  22. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a 2-stranded, parallel coiled coil. Science 254, 539–544 (1991).

    Article  CAS  Google Scholar 

  23. Junius, F.K., O'Donoghue, S.I., Nilges, M., Weiss, A.S. & King, G.F. High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer. J. Biol. Chem. 271, 13663–13667 (1996).

    Article  CAS  Google Scholar 

  24. Watt, R.M. & Voss, E.W., Jr. Mechanism of quenching of fluorescein by anti-fluorescein IgG antibodies. Immunochemistry 14, 533–551 (1977).

    Article  CAS  Google Scholar 

  25. Sreerama, N., Venyaminov, S.Y. & Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Anal. Biochem. 287, 243–251 (2000).

    Article  CAS  Google Scholar 

  26. Hammarstrom, P., Wiseman, R.L., Powers, E.T. & Kelly, J.W. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299, 713–716 (2003).

    Google Scholar 

  27. Schuler, B., Lipman, E.A., Steinbach, P.J., Kumke, M. & Eaton, W.A. Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence. Proc. Natl. Acad. Sci. USA 102, 2754–2759 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institutes of Health and in part by a grant to Yale University, in support of A.S., from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

N.W.L. contributed to experimental design, fluorophore synthesis, in vitro binding analyses, CD and manuscript drafting; R.J.D. contributed to experimental design and live cell experiments; D.B.F. contributed to in vitro binding analyses, CD and characterization of polypeptide-FlAsH complexes; A.S. contributed to experimental design and manuscript drafting.

Corresponding author

Correspondence to Alanna Schepartz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–3, and Supplementary Methods (PDF 694 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luedtke, N., Dexter, R., Fried, D. et al. Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH. Nat Chem Biol 3, 779–784 (2007). https://doi.org/10.1038/nchembio.2007.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing