Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme


Geosmin (1) is responsible for the characteristic odor of moist soil, as well as off-flavors in drinking water and foodstuffs1,2. Geosmin is generated from farnesyl diphosphate (FPP, 2) by an enzyme that is encoded by the SCO6073 gene in the soil organism Streptomyces coelicolor A3(2) (ref. 3). We have now shown that the recombinant N-terminal half of this protein catalyzes the Mg2+-dependent cyclization of FPP to germacradienol (3) and germacrene D (4), while the highly homologous C-terminal domain, previously thought to be catalytically silent, catalyzes the Mg2+-dependent conversion of germacradienol to geosmin. Site-directed mutagenesis confirmed that the N- and C-terminal domains each harbor a distinct, independently functioning active site. A mutation in the N-terminal domain of germacradienol-geosmin synthase of a catalytically essential serine to alanine results in the conversion of FPP to a mixture of sesquiterpenes that includes an aberrant product identified as isolepidozene (6), which was previously suggested to be an enzyme-bound intermediate in the cyclization of FPP to germacradienol.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Organization of protein domains and conserved Mg2+-binding motifs in S. coelicolor germacradienol-geosmin synthase.


  1. Gerber, N.N. Volatile substances from actinomycetes: their role in the odor pollution of water. CRC Crit. Rev. Microbiol. 7, 191–214 (1979).

    CAS  Article  Google Scholar 

  2. Buttery, R.G. & Garibaldi, J.A. Geosmin and methylisoborneol in garden soil. J. Agric. Food Chem. 24, 1246–1247 (1976).

    CAS  Article  Google Scholar 

  3. Jiang, J., He, X. & Cane, D.E. Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin. J. Am. Chem. Soc. 128, 8128–8129 (2006).

    CAS  Article  Google Scholar 

  4. Gerber, N.N. & Lechevalier, H.A. Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl. Microbiol. 13, 935–938 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerber, N.N. Geosmin, from microorganisms, is trans-1,10-dimethyl-trans-9-decalol. Tetrahedr. Lett. 9, 2971–2974 (1968).

    Article  Google Scholar 

  6. Pollak, F.C. & Berger, R.G. Geosmin and related volatiles in bioreactor-cultured Streptomyces citreus CBS 109.60. Appl. Environ. Microbiol. 62, 1295–1299 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dickschat, J.S., Wenzel, S.C., Bode, H.B., Muller, R. & Schulz, S. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. ChemBioChem 5, 778–787 (2004).

    CAS  Article  Google Scholar 

  8. Dickschat, J.S., Bode, H.B., Wenzel, S.C., Muller, R. & Schulz, S. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. ChemBioChem 6, 2023–2033 (2005).

    CAS  Article  Google Scholar 

  9. Scholler, C.E., Gurtler, H., Pedersen, R., Molin, S. & Wilkins, K. Volatile metabolites from actinomycetes. J. Agric. Food Chem. 50, 2615–2621 (2002).

    Article  Google Scholar 

  10. La Guerche, S., Chamont, S., Blancard, D., Dubourdieu, D. & Darriet, P. Origin of (-)-geosmin on grapes: on the complementary action of two fungi, Botrytis cinerea and Penicillium expansum. Antonie Van Leeuwenhoek 88, 131–139 (2005).

    Article  Google Scholar 

  11. Heil, T.P. & Lindsay, R.C. Volatile compounds in flavor-tainted fish from the Upper Wisconsin River. J. Environ. Sci. Health B 23, 489–512 (1988).

    CAS  Article  Google Scholar 

  12. Berthelot, M. & André, G. Sur l'odeur propre de la terre. Compt. Rend. 112, 598–599 (1891).

    Google Scholar 

  13. Bentley, R. & Meganathan, R. Geosmin and methylisoborneol biosynthesis in streptomycetes. Evidence for an isoprenoid pathway and its absence in non-differentiating isolates. FEBS Lett. 125, 220–222 (1981).

    CAS  Article  Google Scholar 

  14. Spiteller, D., Jux, A., Piel, J. & Boland, W. Feeding of [5,5-2H2]-1-desoxy-D-xylulose and [4,4,6,6,6-2H5]-mevalolactone to a geosmin-producing Streptomyces sp. and Fossombronia pusilla. Phytochemistry 61, 827–834 (2002).

    CAS  Article  Google Scholar 

  15. Cane, D.E. & Watt, R.M. Expression and mechanistic analysis of a germacradienol synthase from Streptomyces coelicolor implicated in geosmin biosynthesis. Proc. Natl. Acad. Sci. USA 100, 1547–1551 (2003).

    CAS  Article  Google Scholar 

  16. He, X. & Cane, D.E. Mechanism and stereochemistry of the germacradienol/germacrene D synthase of Streptomyces coelicolor A3(2). J. Am. Chem. Soc. 126, 2678–2679 (2004).

    CAS  Article  Google Scholar 

  17. Cane, D.E., He, X., Kobayashi, S., Omura, S. & Ikeda, H. Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol–geosmin synthase. J. Antibiot. (Tokyo) 59, 471–479 (2006).

    CAS  Article  Google Scholar 

  18. Gust, B., Challis, G.L., Fowler, K., Kieser, T. & Chater, K.F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100, 1541–1546 (2003).

    CAS  Article  Google Scholar 

  19. Hardt, I.H., Rieck, A., König, W.A. & Muhle, H. Isolepidozene, a diastereomer of bicyclogermacrene, in some liverworts. Phytochemistry 40, 605–606 (1995).

    CAS  Article  Google Scholar 

  20. Dickschat, J.S., Bode, H.B., Mahmud, T., Muller, R. & Schulz, S. A novel type of geosmin biosynthesis in myxobacteria. J. Org. Chem. 70, 5174–5182 (2005).

    CAS  Article  Google Scholar 

  21. Christianson, D.W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412–3442 (2006).

    CAS  Article  Google Scholar 

  22. Rynkiewicz, M.J., Cane, D.E. & Christianson, D.W. X-ray crystal structures of D100E trichodiene synthase and its pyrophosphate complex reveal the basis for terpene product diversity. Biochemistry 41, 1732–1741 (2002).

    CAS  Article  Google Scholar 

  23. Starks, C.M., Back, K., Chappell, J. & Noel, J.P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-eristolochene synthase. Science 277, 1815–1820 (1997).

    CAS  Article  Google Scholar 

  24. Felicetti, B. & Cane, D.E. Aristolochene synthase: mechanistic analysis of active site residues by site-directed mutagenesis. J. Am. Chem. Soc. 126, 7212–7221 (2004).

    CAS  Article  Google Scholar 

  25. Little, D.B. & Croteau, R.B. Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases δ-selinene synthase and γ-humulene synthase. Arch. Biochem. Biophys. 402, 120–135 (2002).

    CAS  Article  Google Scholar 

  26. Kawaide, H., Sassa, T. & Kamiya, Y. Functional analysis of the two interacting cyclase domains in ent-kaurene synthase from the fungus Phaeosphaeria sp. L487 and a comparison with cyclases from higher plants. J. Biol. Chem. 275, 2276–2280 (2000).

    CAS  Article  Google Scholar 

  27. Toyomasu, T. et al. Cloning of a full-length cDNA encoding ent-kaurene synthase from Gibberella fujikuroi: functional analysis of a bifunctional diterpene cyclase. Biosci. Biotechnol. Biochem. 64, 660–664 (2000).

    CAS  Article  Google Scholar 

  28. Feil, C., Sussmuth, R., Jung, G. & Poralla, K. Site-directed mutagenesis of putative active-site residues in squalene-hopene cyclase. Eur. J. Biochem. 242, 51–55 (1996).

    CAS  Article  Google Scholar 

  29. Tetzlaff, C.N. et al. A gene cluster for biosynthesis of the sesquiterpenoid antibiotic pentalenolactone in Streptomyces avermitilis. Biochemistry 45, 6179–6186 (2006).

    CAS  Article  Google Scholar 

  30. Cane, D.E., Chiu, H.T., Liang, P.H. & Anderson, K.S. Pre-steady-state kinetic analysis of the trichodiene synthase reaction pathway. Biochemistry 36, 8332–8339 (1997).

    CAS  Article  Google Scholar 

Download references


We thank S. Schulz of the Technische Universität Braunschweig for a gift of synthetic octalin and T.-L. Shen for assistance with the mass spectrometric analysis. This research was supported by US National Institutes of Health Grant GM30301 to D.E.C.

Author information

Authors and Affiliations



X.H. prepared the D86E, L90D and S233A mutants of SCO6073 and carried out the initial steady state kinetic characterization and product identification of these variant proteins. J.J. carried out all other experiments described, including the GC-MS identification of 6. The experiments were conceived by J.J., X.H. and D.E.C., and the manuscript was prepared by J.J. and D.E.C.

Corresponding author

Correspondence to David E Cane.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4, Supplementary Scheme 1, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 259 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, J., He, X. & Cane, D. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat Chem Biol 3, 711–715 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing