Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new thiamin salvage pathway

Abstract

The physiological function for thiaminase II, a thiamin-degrading enzyme, has eluded investigators for more than 50 years. Here, we demonstrate that this enzyme is involved in the regeneration of the thiamin pyrimidine rather than in thiamin degradation, and we identify a new pathway involved in the salvage of base-degraded forms of thiamin. This pathway is widely distributed among bacteria, archaea and eukaryotes. In this pathway, thiamin hydrolysis products such as N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (formylaminopyrimidine; 15) are transported into the cell using the ThiXYZ transport system, deformylated by the ylmB-encoded amidohydrolase and hydrolyzed to 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP; 6)—an intermediate on the de novo thiamin biosynthetic pathway. To our knowledge this is the first example of a thiamin salvage pathway involving thiamin analogs generated by degradation of one of the heterocyclic rings of the cofactor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of formylaminopyrimidine and its identification in a mixture of thiamin degraded in the presence of soil.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Begley, T.P. & Ealick, S.E. Mechanistic and structural studies on thiamine biosynthetic enzymes. Oxidative Stress and Disease 11, 15–28 (2004).

    CAS  Google Scholar 

  2. Begley, T.P. Cofactor biosynthesis: an organic chemist's treasure trove. Nat. Prod. Rep. 23, 15–25 (2006).

    Article  CAS  Google Scholar 

  3. Lawhorn, B.G., Mehl, R.A. & Begley, T.P. Biosynthesis of the thiamin pyrimidine: the reconstitution of a remarkable rearrangement reaction. Org. Biomol. Chem. 2, 2538–2546 (2004).

    Article  CAS  Google Scholar 

  4. Park, J.-H., Burns, K., Kinsland, C. & Begley, T.P. Characterization of two kinases involved in thiamine pyrophosphate and pyridoxal phosphate biosynthesis in Bacillus subtilis: 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase and pyridoxal kinase. J. Bacteriol. 186, 1571–1573 (2004).

    Article  CAS  Google Scholar 

  5. Dorrestein, P.C., Zhai, H., McLafferty, F.W. & Begley, T.P. The biosynthesis of the thiazole phosphate moiety of thiamin: the sulfur transfer mediated by the sulfur carrier protein ThiS. Chem. Biol. 11, 1373–1381 (2004).

    CAS  PubMed  Google Scholar 

  6. Hanes, J.W., Ealick, S.E. & Begley, T.P. Thiamin phosphate synthase: the rate of pyrimidine carbocation formation. J. Am. Chem. Soc. 129, 4860–4861 (2007).

    Article  CAS  Google Scholar 

  7. Webb, E. & Downs, D. Characterization of thiL, encoding thiamin-monophosphate kinase, in Salmonella typhimurium. J. Biol. Chem. 272, 15702–15707 (1997).

    Article  CAS  Google Scholar 

  8. Toms, A.V., Haas, A.L., Park, J.-H., Begley, T.P. & Ealick, S.E. Structural characterization of the regulatory proteins TenA and TenI from Bacillus subtilis and identification of TenA as a thiaminase II. Biochemistry 44, 2319–2329 (2005).

    Article  CAS  Google Scholar 

  9. Haas, A.L., Laun, N.P. & Begley, T.P. Thi20, a remarkable enzyme from Saccharomyces cerevisiae with dual thiamin biosynthetic and degradation activities. Bioorg. Chem. 33, 338–344 (2005).

    Article  CAS  Google Scholar 

  10. Rodionov, D.A., Vitreschak, A.G., Mironov, A.A. & Gelfand, M.S. Comparative genomics of thiamin biosynthesis in procaryotes. J. Biol. Chem. 277, 48949–48959 (2002).

    Article  CAS  Google Scholar 

  11. Winkler, W., Nahvi, A. & Breaker, R.R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    Article  CAS  Google Scholar 

  12. Miranda-Rios, J. The THI-box riboswitch, or how RNA binds thiamin pyrophosphate. Structure 15, 259–265 (2007).

    Article  CAS  Google Scholar 

  13. Takami, H. & Horikoshi, K. Reidentification of facultatively alkaliphilic Bacillus sp. C-125 to Bacillus halodurans. Biosci. Biotechnol. Biochem. 63, 943–945 (1999).

    Article  CAS  Google Scholar 

  14. Horikoshi, K. Alkaliphiles: some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63, 735–750 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Maier, G.D. & Metzler, D.E. Structures of thiamine in basic solution. J. Am. Chem. Soc. 79, 4386–4391 (1957).

    Article  CAS  Google Scholar 

  16. Chahine, E.H. & Dubois, J.M. Kinetics and thermodynamics of the structural transformations of thiamine in neutral and basic aqueous media. The UV spectrum of the tetrahedral pseudobase intermediate. J. Am. Chem. Soc. 105, 2335–2340 (1983).

    Article  Google Scholar 

  17. Xu, J.C., Stucki, J.W., Wu, J., Kostka, J.E. & Sims, G.K. Fate of atrazine and alachlor in redox-treated ferruginous smectite. Environ. Toxicol. Chem. 20, 2717–2724 (2001).

    Article  CAS  Google Scholar 

  18. Quayle, J.R. Formate dehydrogenase. Methods Enzymol. 9, 360–364 (1966).

    Article  CAS  Google Scholar 

  19. Day, N. & Keillor, J.W. A continuous spectrophotometric linked enzyme assay for transglutaminase activity. Anal. Biochem. 274, 141–144 (1999).

    Article  CAS  Google Scholar 

  20. Kurata, G.-I., Sakai, T. & Miyahara, T. Antagonists of thiamine XVIII: reaction condition in the formation of desthiothiamine from alkaline thiamine solution with amino acids. Bitamin 37, 398–402 (1968).

    CAS  Google Scholar 

  21. Melnick, J. et al. Identification of the two missing bacterial genes involved in thiamine salvage: thiamine pyrophosphokinase and thiamine kinase. J. Bacteriol. 186, 3660–3662 (2004).

    Article  CAS  Google Scholar 

  22. Imamura, N. & Nakayama, H. thiD locus of Escherichia coli. Experientia 37, 1265–1266 (1981).

    Article  CAS  Google Scholar 

  23. Imamura, N. & Nakayama, H. thiK and thiL loci of Escherichia coli. J. Bacteriol. 151, 708–717 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mizote, T. & Nakayama, H. The thiM locus and its relation to phosphorylation of hydroxyethylthiazole in Escherichia coli. J. Bacteriol. 171, 3228–3232 (1989).

    Article  CAS  Google Scholar 

  25. Dornow, A. & Petsch, G. Reductions with lithium aluminum hydride. V. The preparation of vitamin B1. Chem. Ber. 86, 1404–1407 (1953).

    Article  CAS  Google Scholar 

  26. Pace, C.N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423 (1995).

    Article  CAS  Google Scholar 

  27. Anderson, K.S., Sikorski, J.A. & Johnson, K.A. Evalutaion of 5-enolpyruvoylshikimate-3-phosphate synthase substrate and inhibitor binding by stopped-flow and equilibrium fluorescence measurements. Biochemistry 27, 1604–1610 (1988).

    Article  CAS  Google Scholar 

  28. Schyns, G. et al. Isolation and characterization of new thiamine-deregulated mutants of Bacillus subtilis. J. Bacteriol. 187, 8127–8136 (2005).

    Article  CAS  Google Scholar 

  29. Wach, A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259–265 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Kinsland (Protein Purification Facility, Cornell University) for overexpressing TenA and J. Hanes for his help with the Kd determination. We would also like to thank Roche for providing aminopyrimidine. This research was supported by a grant from the US National Institutes of Health (DK44083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadhg P Begley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 351 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, A., Schyns, G., Potot, S. et al. A new thiamin salvage pathway. Nat Chem Biol 3, 492–497 (2007). https://doi.org/10.1038/nchembio.2007.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing