Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Targeting transcription is no longer a quixotic quest

Misregulated transcription factors play prominent roles in human disease, but their dynamic protein-protein interaction network has long made the goal of transcription-targeted therapeutics impractical. Recent advances in technologies for modulating protein interaction networks mean that the end of the quest is in sight.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The chemical space of protein-protein interactions.
Figure 2: Transcription complexes are dynamic in composition and conformation.

References

  1. 1

    Jacob, F. & Monod, J. J. Mol. Biol. 3, 318–356 (1961).

    CAS  Article  Google Scholar 

  2. 2

    Lin, C.Y. et al. Cell 151, 56–67 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Pattabiraman, D.R. et al. Blood 123, 2682–2690 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Khoo, K.H., Verma, C.S. & Lane, D.P. Nat. Rev. Drug Discov. 13, 217–236 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Kar, A. & Gutierrez-Hartmann, A. Crit. Rev. Biochem. Mol. Biol. 48, 522–543 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Arkin, M.R., Tang, Y. & Wells, J.A. Chem. Biol. 21, 1102–1114 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Thompson, A.D., Dugan, A., Gestwicki, J.E. & Mapp, A.K. ACS Chem. Biol. 7, 1311–1320 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Cesa, L.C., Mapp, A.K. & Gestwicki, J.E. Frontiers Bioeng. Biotechnol. 3, 119 (2015).

    Article  Google Scholar 

  9. 9

    Fuxreiter, M. et al. Nat. Chem. Biol. 4, 728–737 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Hargreaves, D.C. & Crabtree, G.R. Cell Res. 21, 396–420 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Krishnamurthy, M. et al. ACS Chem. Biol. 6, 1321–1326 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Xie, X. et al. Oncogene 33, 1037–1046 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Lee, C.W., Ferreon, J.C., Ferreon, A.C., Arai, M. & Wright, P.E. Proc. Natl. Acad. Sci. USA 107, 19290–19295 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Thakur, J.K., Yadav, A. & Yadav, G. Nucleic Acids Res. 42, 2112–2125 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Shammas, S.L., Travis, A.J. & Clarke, J. Proc. Natl. Acad. Sci. USA 111, 12055–12060 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Law, S.M., Gagnon, J.K., Mapp, A.K. & Brooks, C.L. III. Proc. Natl. Acad. Sci. USA 111, 12067–12072 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Wang, N., Lodge, J.M., Fierke, C.A. & Mapp, A.K. Proc. Natl. Acad. Sci. USA 111, 12061–12066 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Leonard, S.E., Register, A.C., Krishnamurty, R., Brighty, G.J. & Maly, D.J. ACS Chem. Biol. 9, 1894–1905 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Cesa, L.C. et al. ACS Chem. Biol. 8, 1988–1997 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Wang, N. et al. J. Am. Chem. Soc. 135, 3363–3366 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Majmudar, C.Y. et al. Angew. Chem. 51, 11258–11262 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Gee, C.T., Koleski, E.J. & Pomerantz, W.C. Angew. Chem. 54, 3735–3739 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Bradner, J.E., McPherson, O.M. & Koehler, A.N. Nat. Protoc. 1, 2344–2352 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Pop, M.S. et al. Mol. Cancer Ther. 13, 1492–1502 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Niu, S., Rabuck, J.N. & Ruotolo, B.T. Curr. Opin. Chem. Biol. 17, 809–817 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Gestwicki, J. Wells, P. Arora and L. Kiessling for illuminating discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna K Mapp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mapp, A., Pricer, R. & Sturlis, S. Targeting transcription is no longer a quixotic quest. Nat Chem Biol 11, 891–894 (2015). https://doi.org/10.1038/nchembio.1962

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing