Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Functional and structural characterization of a heparanase

Abstract

We report the structural and functional characterization of a novel heparanase (BpHep) from the invasive pathogenic bacterium Burkholderia pseudomallei (Bp), showing 24% sequence identity with human heparanase (hHep). Site-directed mutagenesis studies confirmed the active site resi-dues essential for activity, and we found that BpHep has specificity for heparan sulfate. Finally, we describe the first heparanase X-ray crystal structure, which provides new insight into both substrate recognition and inhibitor design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of B. pseudomallei heparanase (BpHep).
Figure 2: Analysis of B. pseudomallei heparanase (BpHepwt) and human heparanase cleavage of 1.
Figure 3: Crystallographic structure of B. pseudomallei heparanase (BpHepwt, PDB ID: 5BWI).

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Parish, C.R., Freeman, C. & Hulett, M. Biochim. Biophys. Acta 1471, M99–M108 (2001).

    CAS  PubMed  Google Scholar 

  2. Ilan, N., Elkin, M. & Vlodavsky, I. Int. J. Biochem. Cell Biol. 38, 2018–2039 (2006).

    Article  CAS  Google Scholar 

  3. Meirovitz, A. et al. FEBS J. 280, 2307–2319 (2013).

    Article  CAS  Google Scholar 

  4. Arvatz, G., Shafat, I., Levy-Adam, F., Ilan, N. & Vlodavsky, I. Cancer Metastasis Rev. 30, 253–268 (2011).

    Article  Google Scholar 

  5. Höök, M., Wasteson, A. & Oldberg, A. Biochem. Biophys. Res. Commun. 67, 1422–1428 (1975).

    Article  Google Scholar 

  6. Vlodavsky, I. et al. Semin. Cancer Biol. 12, 121–129 (2002).

    Article  CAS  Google Scholar 

  7. Sanderson, R.D. & Iozzo, R.V. Matrix Biol. 31, 283–284 (2012).

    Article  CAS  Google Scholar 

  8. Ziolkowski, A.F., Popp, S.K., Freeman, C., Parish, C.R. & Simeonovic, C.J. J. Clin. Invest. 122, 132–141 (2012).

    Article  CAS  Google Scholar 

  9. Hulett, M.D. et al. Biochemistry 39, 15659–15667 (2000).

    Article  CAS  Google Scholar 

  10. Zhou, Z., Bates, M. & Madura, J.D. Proteins 65, 580–592 (2006).

    Article  CAS  Google Scholar 

  11. Sapay, N., Cabannes, É., Petitou, M. & Imberty, A. Biopolymers 97, 21–34 (2012).

    Article  CAS  Google Scholar 

  12. Gandhi, N.S., Freeman, C., Parish, C.R. & Mancera, R.L. Glycobiology 22, 35–55 (2012).

    Article  CAS  Google Scholar 

  13. Vinader, V., Haji-Abdullahi, M.H., Patterson, L.H. & Afarinkia, K. PLoS ONE 8, e82111 (2013).

    Article  Google Scholar 

  14. Linhardt, R.J., Galliher, P.M. & Cooney, C.L. Appl. Biochem. Biotechnol. 12, 135–176 (1986).

    Article  CAS  Google Scholar 

  15. Lohse, D.L. & Linhardt, R.J. J. Biol. Chem. 267, 24347–24355 (1992).

    CAS  PubMed  Google Scholar 

  16. St John, J.A. et al. MBio 5, e00025 (2014).

    Article  Google Scholar 

  17. Vreys, V. & David, G. J. Cell. Mol. Med. 11, 427–452 (2007).

    Article  CAS  Google Scholar 

  18. Huang, K.-S. et al. Anal. Biochem. 333, 389–398 (2004).

    Article  CAS  Google Scholar 

  19. Bohlmann, L., Chang, C.-W., Beacham, I.R. & von Itzstein, M. ChemBioChem 16, 1205–1211 (2015).

    Article  CAS  Google Scholar 

  20. Hu, Y.-P. et al. J. Am. Chem. Soc. 134, 20722–20727 (2012).

    Article  CAS  Google Scholar 

  21. Gong, F. et al. J. Biol. Chem. 278, 35152–35158 (2003).

    Article  CAS  Google Scholar 

  22. Shimoi, K. & Nakayama, T. Methods Enzymol. 400, 263–272 (2005).

    Article  CAS  Google Scholar 

  23. Pearson, A.G., Kiefel, M.J., Ferro, V. & von Itzstein, M. Org. Biomol. Chem. 9, 4614–4625 (2011).

    Article  CAS  Google Scholar 

  24. Michikawa, M. et al. J. Biol. Chem. 287, 14069–14077 (2012).

    Article  CAS  Google Scholar 

  25. Fairbanks, M.B. et al. J. Biol. Chem. 274, 29587–29590 (1999).

    Article  CAS  Google Scholar 

  26. Holden, M.T. et al. Proc. Natl. Acad. Sci. USA 101, 14240–14245 (2004).

    Article  CAS  Google Scholar 

  27. Battye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G.W. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  Google Scholar 

  28. Winn, M.D. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  29. Evans, P. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  Google Scholar 

  30. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  31. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  32. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  33. Vaguine, A.A., Richelle, J. & Wodak, S.J. Acta Crystallogr. D Biol. Crystallogr. 55, 191–205 (1999).

    Article  CAS  Google Scholar 

  34. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Rosebud Foundation and Australian Synchrotron scientists for their support during X-ray diffraction data collection at this facility's beamlines, MX1 and MX2. We thank B. Matthews, Smart Water Research Centre (Griffith University), for excellent mass spectrometry technical support.

Author information

Authors and Affiliations

Authors

Contributions

L.B., G.D.T., J.T., R.J.T., I.R.B. and M.v.I. contributed to molecular biology, protein chemistry and data analysis; L.B., C.-W.C., T.H., I.R.B. and M.v.I. contributed to NMR experiments and data analysis; C.-W.C. synthesized HS fragments; L.B., X.Y., H.B. and M.v.I. contributed to protein crystallization and structure determination; L.B., J.C.D., M.W., X.Y., H.B. and M.v.I. contributed to molecular modeling; all authors contributed to manuscript preparation; M.v.I. conceived the study.

Corresponding authors

Correspondence to Ifor R Beacham, Helen Blanchard or Mark von Itzstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–13. (PDF 13224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohlmann, L., Tredwell, G., Yu, X. et al. Functional and structural characterization of a heparanase. Nat Chem Biol 11, 955–957 (2015). https://doi.org/10.1038/nchembio.1956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing