Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Two cytochromes P450 catalyze S-heterocyclizations in cabbage phytoalexin biosynthesis

Abstract

Phytoalexins are abundant in edible crucifers and have important biological activities, yet no dedicated gene for their biosynthesis is known. Here, we report two new cytochromes P450 from Brassica rapa (Chinese cabbage) that catalyze unprecedented S-heterocyclizations in cyclobrassinin and spirobrassinin biosynthesis. Our results provide genetic and biochemical insights into the biosynthesis of a prominent pair of dietary metabolites and have implications for pathway discovery across >20 recently sequenced crucifers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phytoalexins in Brassica rapa.
Figure 2: Phytoalexin production in B. rapa and in vitro analysis of CYPs in cruciferous phytoalexin biosynthesis.
Figure 3: Occurrence of CYP71CR genes and phytoalexins across the Brassicaceae family.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Gene Expression Omnibus

NCBI Reference Sequence

References

  1. Pedras, M.S.C., Yaya, E.E. & Glawischnig, E. Nat. Prod. Rep. 28, 1381–1405 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Bednarek, P. ChemBioChem 13, 1846–1859 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Pedras, M.S.C., Yaya, E.E. & Hossain, S. Org. Biomol. Chem. 8, 5150–5158 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Banerjee, T. et al. Oncogene 27, 2851–2857 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Izutani, Y., Yogosawa, S., Sowa, Y. & Sakai, T. Int. J. Oncol. 40, 816–824 (2012).

    CAS  PubMed  Google Scholar 

  6. Kim, S.-M. et al. Phytother. Res. 28, 423–431 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Mehta, R.G. et al. Carcinogenesis 16, 399–404 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Takasugi, M., Monde, K., Katsui, N. & Shirata, A. Bull. Chem. Soc. Jpn. 61, 285–289 (1988).

    Article  CAS  Google Scholar 

  9. Pfalz, M. et al. Plant Cell 23, 716–729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mikkelsen, M.D. et al. Metab. Eng. 14, 104–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Traka, M.H. et al. New Phytol. 198, 1085–1095 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clay, N.K., Adio, A.M., Denoux, C., Jander, G. & Ausubel, F.M. Science 323, 95–101 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Bednarek, P. et al. Science 323, 101–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Bradbury, L.M., Niehaus, T.D. & Hanson, A.D. Curr. Opin. Biotechnol. 24, 278–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Saito, K., Hirai, M.Y. & Yonekura-Sakakibara, K. Trends Plant Sci. 13, 36–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, X. et al. Nat. Genet. 43, 1035–1039 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Williams, P.H. & Hill, C.B. Science 232, 1385–1389 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Monde, K., Takasugi, M. & Ohnishi, T. J. Am. Chem. Soc. 116, 6650–6657 (1994).

    Article  CAS  Google Scholar 

  19. Bak, S. & Feyereisen, R. Plant Physiol. 127, 108–118 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klein, A.P., Anarat-Cappillino, G. & Sattely, E.S. Angew. Chem. Int. Ed. 52, 13625–13628 (2013).

    Article  CAS  Google Scholar 

  21. Pompon, D., Louerat, B., Bronine, A. & Urban, P. Methods Enzymol. 272, 51–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Tsunematsu, Y. et al. Nat. Chem. Biol. 9, 818–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Nelson, D.R. Hum. Genomics 4, 59–65 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bednarek, P. et al. New Phytol. 192, 713–726 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Pedras, M.S.C. & To, Q.H. Phytochemistry 113, 57–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Pedras, M.S.C. & Jha, M. Bioorg. Med. Chem. 14, 4958–4979 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Pedras, M.S.C., Minic, Z. & Sarma-Mamillapalle, V.K. Bioorg. Med. Chem. 19, 1390–1399 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Pedras, M.S.C., Suchy, M. & Ahiahonu, P.W.K. Org. Biomol. Chem. 4, 691–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Schuhegger, R. et al. Plant Physiol. 141, 1248–1254 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolger, A.M., Lohse, M. & Usadel, B. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trapnell, C. et al. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goodstein, D.M. et al. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Kiefer, M. et al. Plant Cell Physiol. 55, e3 (2014).

    Article  PubMed  Google Scholar 

  34. Wiesner, M., Schreiner, M. & Zrenner, R. BMC Plant Biol. 14, 124 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Qi, J. et al. Plant Mol. Biol. Rep. 28, 597–604 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health grants R00 GM089985 and DP2 AT008321 (E.S.S.). A.P.K. was supported by the US National Defense Science and Engineering Graduate Fellowship. We thank M. Jin (Korea Brassica Genome Project) and H.B. Lauffer (Wisconsin Fast Plants Program) for providing seeds. We thank X. Ji (Stanford Functional Genomics Facility) for RNA sequencing services. We thank L. Meyer-Teruel for help in initial metabolic profiling of B. rapa, J.-G. Kim and L. Sassoubre for qRT-PCR assistance, D. Nelson for CYP nomenclature assignment and S. Galanie and members of the Sattely Group for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.P.K. and E.S.S. designed the study. A.P.K. performed all experiments. A.P.K. and E.S.S. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Elizabeth S Sattely.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–17 and Supplementary Tables 1–8. (PDF 13517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, A., Sattely, E. Two cytochromes P450 catalyze S-heterocyclizations in cabbage phytoalexin biosynthesis. Nat Chem Biol 11, 837–839 (2015). https://doi.org/10.1038/nchembio.1914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing