Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase

Abstract

Aldehyde oxidase (AOX) is a xanthine oxidase (XO)-related enzyme with emerging importance due to its role in the metabolism of drugs and xenobiotics. We report the first crystal structures of human AOX1, substrate free (2.6-Å resolution) and in complex with the substrate phthalazine and the inhibitor thioridazine (2.7-Å resolution). Analysis of the protein active site combined with steady-state kinetic studies highlight the unique features, including binding and substrate orientation at the active site, that characterize human AOX1 as an important drug-metabolizing enzyme. Structural analysis of the complex with the noncompetitive inhibitor thioridazine revealed a new, unexpected and fully occupied inhibitor-binding site that is structurally conserved among mammalian AOXs and XO. The new structural insights into the catalytic and inhibition mechanisms of human AOX that we now report will be of great value for the rational analysis of clinical drug interactions involving inhibition of AOX1 and for the prediction and design of AOX-stable putative drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface representation of the hAOX1 crystal structure homodimer.
Figure 2: Close up of the hAOX1-free (green), hAOX1–Pht–Thi (blue) and mAOX3 (gray) active sites and their surrounding residues.
Figure 3: Binding site of the noncompetitive inhibitor thioridazine and localization of the two gates that determine substrate (phthalazine) access.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Garattini, E., Fratelli, M. & Terao, M. The mammalian aldehyde oxidase gene family. Hum. Genomics 4, 119–130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Garattini, E., Fratelli, M. & Terao, M. Mammalian aldehyde oxidases: genetics, evolution and biochemistry. Cell. Mol. Life Sci. 65, 1019–1048 (2008).

    Article  CAS  Google Scholar 

  3. Hille, R., Hall, J. & Basu, P. The mononuclear molybdenum enzymes. Chem. Rev. 114, 3963–4038 (2014).

    Article  CAS  Google Scholar 

  4. Garattini, E., Mendel, R., Romao, M.J., Wright, R. & Terao, M. Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem. J. 372, 15–32 (2003).

    Article  CAS  Google Scholar 

  5. Mahro, M. et al. Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity. PLoS ONE 8, e82285 (2013).

    Article  Google Scholar 

  6. Wahl, R.C. & Rajagopalan, K.V. Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. J. Biol. Chem. 257, 1354–1359 (1982).

    CAS  PubMed  Google Scholar 

  7. Okamoto, K. et al. The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Proc. Natl. Acad. Sci. USA 101, 7931–7936 (2004).

    Article  CAS  Google Scholar 

  8. Jones, R.M., Inscore, F.E., Hille, R. & Kirk, M.L. Freeze-quench magnetic circular dichroism spectroscopic study of the “very rapid” intermediate in xanthine oxidase. Inorg. Chem. 38, 4963–4970 (1999).

    Article  CAS  Google Scholar 

  9. Terao, M. et al. Avian and canine aldehyde oxidases. Novel insights into the biology and evolution of molybdo-flavoenzymes. J. Biol. Chem. 281, 19748–19761 (2006).

    Article  CAS  Google Scholar 

  10. Garattini, E. & Terao, M. The role of aldehyde oxidase in drug metabolism. Expert Opin. Drug Metab. Toxicol. 8, 487–503 (2012).

    Article  CAS  Google Scholar 

  11. Obach, R.S., Huynh, P., Allen, M.C. & Beedham, C. Human liver aldehyde oxidase: inhibition by 239 drugs. J. Clin. Pharmacol. 44, 7–19 (2004).

    Article  CAS  Google Scholar 

  12. Pryde, D.C. et al. Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J. Med. Chem. 53, 8441–8460 (2010).

    Article  CAS  Google Scholar 

  13. Garattini, E. & Terao, M. Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab. Rev. 43, 374–386 (2011).

    Article  CAS  Google Scholar 

  14. Kitamura, S., Sugihara, K. & Ohta, S. Drug-metabolizing ability of molybdenum hydroxylases. Drug Metab. Pharmacokinet. 21, 83–98 (2006).

    Article  CAS  Google Scholar 

  15. Fu, C. et al. Aldehyde oxidase 1 (AOX1) in human liver cytosols: quantitative characterization of AOX1 expression level and activity relationship. Drug Metab. Dispos. 41, 1797–1804 (2013).

    Article  CAS  Google Scholar 

  16. Rashidi, M.R., Smith, J.A., Clarke, S.E. & Beedham, C. In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver. Drug Metab. Dispos. 25, 805–813 (1997).

    CAS  PubMed  Google Scholar 

  17. Beedham, C. The role of non-P450 enzymes in drug oxidation. Pharm. World Sci. 19, 255–263 (1997).

    Article  CAS  Google Scholar 

  18. Beedham, C. in Drug Metabolism: Towards the Next Millenium (ed. Gooderham, N.J.) 39–52 (IOS Press, 1998).

  19. Coelho, C. et al. The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity. J. Biol. Chem. 287, 40690–40702 (2012).

    Article  CAS  Google Scholar 

  20. Mahro, M. et al. Characterization and crystallization of mouse aldehyde oxidase 3: from mouse liver to Escherichia coli heterologous protein expression. Drug Metab. Dispos. 39, 1939–1945 (2011).

    Article  CAS  Google Scholar 

  21. Obach, R.S. & Walsky, R.L. Drugs that inhibit oxidation reactions catalyzed by aldehyde oxidase do not inhibit the reductive metabolism of ziprasidone to its major metabolite, S-methyldihydroziprasidone: an in vitro study. J. Clin. Psychopharmacol. 25, 605–608 (2005).

    Article  CAS  Google Scholar 

  22. Rani Basu, L., Mazumdar, K., Dutta, N.K., Karak, P. & Dastidar, S.G. Antibacterial property of the antipsychotic agent prochlorperazine, and its synergism with methdilazine. Microbiol. Res. 160, 95–100 (2005).

    Article  Google Scholar 

  23. Amaral, L. & Viveiros, M. Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. Int. J. Antimicrob. Agents 39, 376–380 (2012).

    Article  CAS  Google Scholar 

  24. Christensen, J.B. et al. A comparative analysis of in vitro and in vivo efficacies of the enantiomers of thioridazine and its racemate. PLoS ONE 8, e57493 (2013).

    Article  CAS  Google Scholar 

  25. Christensen, J.B., Hendricks, O. & Kristiansen, J. Thioridazine and derivatives thereof for reversing antimicrobial drug resistance. US patent 8,623,864 (2014).

  26. Baral, P.K. et al. Structural basis of prion inhibition by phenothiazine compounds. Structure 22, 291–303 (2014).

    Article  CAS  Google Scholar 

  27. Wang, A., Stout, C.D., Zhang, Q. & Johnson, E.F. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. J. Biol. Chem. 290, 5092–5104 (2015).

    Article  CAS  Google Scholar 

  28. Enroth, C., Eger, B.T., Okamoto, K., Nishino, T. & Pai, E.F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA 97, 10723–10728 (2000).

    Article  CAS  Google Scholar 

  29. Ishikita, H., Eger, B.T., Okamoto, K., Nishino, T. & Pai, E.F. Protein conformational gating of enzymatic activity in xanthine oxidoreductase. J. Am. Chem. Soc. 134, 999–1009 (2012).

    Article  CAS  Google Scholar 

  30. Schlauderer, F. et al. Structural analysis of phenothiazine derivatives as allosteric inhibitors of the MALT1 paracaspase. Angew. Chem. Int. Ed. Engl. 52, 10384–10387 (2013).

    Article  CAS  Google Scholar 

  31. Wilder, P.T. et al. In vitro screening and structural characterization of inhibitors of the S100B–p53 interaction. Int. J. High Throughput Screen. 2010, 109–126 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Barr, J.T. & Jones, J.P. Inhibition of human liver aldehyde oxidase: implications for potential drug-drug interactions. Drug Metab. Dispos. 39, 2381–2386 (2011).

    Article  CAS  Google Scholar 

  33. Romão, M.J. Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview. Dalton Trans. 21, 4053–4068 (2009).

    Article  Google Scholar 

  34. Palmer, T. et al. Involvement of the narJ and mob gene products in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli. Mol. Microbiol. 20, 875–884 (1996).

    Article  CAS  Google Scholar 

  35. Temple, C.A., Graf, T.N. & Rajagopalan, K.V. Optimization of expression of human sulfite oxidase and its molybdenum domain. Arch. Biochem. Biophys. 383, 281–287 (2000).

    Article  CAS  Google Scholar 

  36. Hartmann, T. et al. The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab. Dispos. 40, 856–864 (2012).

    Article  CAS  Google Scholar 

  37. Leslie, A.G.W. & Powell, H.R. Evolving Methods for Macromolecular Crystallography (eds. Read, R.J. & Sussman, J.L.) 41–51 (Springer, 2007).

  38. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  39. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  Google Scholar 

  40. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  41. Schwarzenbacher, R., Godzik, A., Grzechnik, S.K. & Jaroszewski, L. The importance of alignment accuracy for molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 60, 1229–1236 (2004).

    Article  Google Scholar 

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  43. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundação para a Ciência e Tecnologia (FCT-MEC) through projects UID/Multi/04378/2013, EXCL/QEQ-COM/0394/2012, PTDC/BIA-PRO/118377/2010 (M.J.R., T.S.-S., C.C.), SFRH/BPD/84581/2012 (C.C.) and DAAD-441.00 (M.J.R., T.S.-S., S.L.) and by Deutsche Forschungsgemeinschaft Grant Le1171/8-1 (S.L.). We thank the I02 staff of the Diamond Light Source (DLS, Didcot, United Kingdom) and X06DA-PXIII staff from the Swiss Light Source (SLS, Paul Scherrer Institut, Villigen, Switzerland) for assistance during data collection. We also thank the staff from beamlines ID14-1, ID29-1 and ID23-1 from the European Synchrotron Radiation Facility (ESRF, Grenoble, France). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement no. 283570). We thank R. Hille (University of California, Riverside) for providing bXO for the inhibition experiments and A. Palma (Universidade Nova de Lisboa, Portugal) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.C., T.S.-S. and M.J.R. conceived and designed the crystallization experiments and performed 3D structure determination. A.F., T.H. and S.L. purified the protein. A.F. and S.L. conducted kinetic experiments. C.C., A.F., T.S.-S., S.L. and M.J.R. performed data analysis. C.C., T.S.-S., S.L. and M.J.R. wrote the manuscript.

Corresponding author

Correspondence to Maria João Romão.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–5. (PDF 1884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, C., Foti, A., Hartmann, T. et al. Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase. Nat Chem Biol 11, 779–783 (2015). https://doi.org/10.1038/nchembio.1895

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1895

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology