Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of enzymatic benzene ring reduction

A Corrigendum to this article was published on 17 September 2015

An Erratum to this article was published on 18 August 2015

This article has been updated

Abstract

In chemical synthesis, the widely used Birch reduction of aromatic compounds to cyclic dienes requires alkali metals in ammonia as extremely low-potential electron donors. An analogous reaction is catalyzed by benzoyl–coenzyme A reductases (BCRs) that have a key role in the globally important bacterial degradation of aromatic compounds at anoxic sites. Because of the lack of structural information, the catalytic mechanism of enzymatic benzene ring reduction remained obscure. Here, we present the structural characterization of a dearomatizing BCR containing an unprecedented tungsten cofactor that transfers electrons to the benzene ring in an aprotic cavity. Substrate binding induces proton transfer from the bulk solvent to the active site by expelling a Zn2+ that is crucial for active site encapsulation. Our results shed light on the structural basis of an electron transfer process at the negative redox potential limit in biology. They open the door for biological or biomimetic alternatives to a basic chemical synthetic tool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical Birch reduction of benzoic acid and enzymatic benzoyl-CoA reduction.
Figure 2: Bam(BC)2 overall structure and redox center arrangement.
Figure 3: Analysis of the bisWPT cofactor.
Figure 4: The BamBCisol and BamBCCoA states.
Figure 5: Molecular basis of the proton-coupled electron transfer steps.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 07 July 2015

    In the version of this article initially published online, the final intermediate in Figure 1a was originally depicted as a fully delocalized radical anion, which was incorrect. The error has been corrected for the print, PDF and HTML versions of this article.

  • 21 July 2015

    In the version of this article initially published, the PDB code for the structure of BamBC as isolated was listed as 4Z4O, which was incorrect. The correct code is 4Z40. The error has been corrected for the PDF and HTML versions of this article.

References

  1. Birch, A.J. Reduction by dissolving metals I. J. Chem. Soc. 66, 430–436 (1944).

    Article  Google Scholar 

  2. Birch, A.J. The Birch reduction in organic synthesis. Pure Appl. Chem. 68, 553–556 (1996).

    Article  CAS  Google Scholar 

  3. Zimmerman, H.E. A mechanistic analysis of the Birch reduction. Acc. Chem. Res. 45, 164–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Zimmerman, H.E. & Wang, P.A. The regioselectivity of the Birch reduction. J. Am. Chem. Soc. 115, 2205–2216 (1993).

    Article  CAS  Google Scholar 

  5. Koch, J., Eisenreich, W., Bacher, A. & Fuchs, G. Products of enzymatic reduction of benzoyl-CoA, a key reaction in anaerobic aromatic metabolism. Eur. J. Biochem. 211, 649–661 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Joshi, D.K., Sutton, J.W., Carver, S. & Blanchard, J.-P. Experiences with commercial production scale operation of dissolving metal reduction using lithium metal and liquid ammonia. Org. Process Res. Dev. 9, 997–1002 (2005).

    Article  CAS  Google Scholar 

  7. Nandi, P., Dye, J.L. & Jackson, J.E. Birch reductions at room temperature with alkali metals in silica gel (Na2K-SG(I)). J. Org. Chem. 74, 5790–5792 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Boll, M., Löffler, C., Morris, B.E. & Kung, J.W. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ. Microbiol. 16, 612–627 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Kung, J.W. et al. Reversible biological Birch reduction at an extremely low redox potential. J. Am. Chem. Soc. 132, 9850–9856 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Buckel, W., Kung, J.W. & Boll, M. The benzoyl-coenzyme a reductase and 2-hydroxyacyl-coenzyme a dehydratase radical enzyme family. ChemBioChem 15, 2188–2194 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds—from one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Boll, M. & Fuchs, G. Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur. J. Biochem. 234, 921–933 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Unciuleac, M. & Boll, M. Mechanism of ATP-driven electron transfer catalyzed by the benzene ring-reducing enzyme benzoyl-CoA reductase. Proc. Natl. Acad. Sci. USA 98, 13619–13624 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Löffler, C. et al. Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ. Microbiol. 13, 696–709 (2011).

    Article  PubMed  Google Scholar 

  15. Kung, J.W. et al. Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc. Natl. Acad. Sci. USA 106, 17687–17692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan, M.K., Mukund, S., Kletzin, A., Adams, M.W. & Rees, D.C. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267, 1463–1469 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Wischgoll, S. et al. Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol. Microbiol. 58, 1238–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Hille, R. The molybdenum oxotransferases and related enzymes. Dalton Trans. 42, 3029–3042 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Pushie, M.J., Cotelesage, J.J. & George, G.N. Molybdenum and tungsten oxygen transferases—structural and functional diversity within a common active site motif. Metallomics 6, 15–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Messerschmidt, A. et al. Crystal structure of pyrogallol-phloroglucinol transhydroxylase, an Mo enzyme capable of intermolecular hydroxyl transfer between phenols. Proc. Natl. Acad. Sci. USA 101, 11571–11576 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S. & Dutton, P.L. Nature of biological electron transfer. Nature 355, 796–802 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Cotelesage, J.J., Pushie, M.J., Grochulski, P., Pickering, I.J. & George, G.N. Metalloprotein active site structure determination: synergy between X-ray absorption spectroscopy and X-ray crystallography. J. Inorg. Biochem. 115, 127–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Pandelia, M.E., Ogata, H. & Lubitz, W. Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. ChemPhysChem 11, 1127–1140 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Romão, M.J. Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview. Dalton Trans. 21, 4053–4068 (2009).

    Article  Google Scholar 

  25. Hu, Y., Faham, S., Roy, R., Adams, M.W. & Rees, D.C. Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 Å resolution crystal structure and its mechanistic implications. J. Mol. Biol. 286, 899–914 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Seiffert, G.B. et al. Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Proc. Natl. Acad. Sci. USA 104, 3073–3077 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weinberg, D.R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Outten, C.E. & O'Halloran, T.V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Thiele, B. et al. Aromatizing cyclohexa-1,5-diene-1-carbonyl-coenzyme A oxidase: characterization and its role in anaerobic aromatic metabolism. J. Biol. Chem. 283, 20713–20721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, D.M., Golding, B.T. & Radom, L. Facilitation of enzyme-catalyzed reactions by partial proton transfer: application to coenzyme-B12–dependent methylmalonyl-CoA mutase. J. Am. Chem. Soc. 121, 1383–1384 (1999).

    Article  CAS  Google Scholar 

  31. Möbitz, H. & Boll, M. A Birch-like mechanism in enzymatic benzoyl-CoA reduction: a kinetic study of substrate analogues combined with an ab initio model. Biochemistry 41, 1752–1758 (2002).

    Article  PubMed  Google Scholar 

  32. Kim, J., Darley, D.J., Buckel, W. & Pierik, A.J. An allylic ketyl radical intermediate in clostridial amino-acid fermentation. Nature 452, 239–242 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Gross, G.G. & Zenk, M.H. Darstellung und Eigenschaften von Coenzym A-Thioestern substituierter Zimtsäuren. Z. Naturforschung 21b, 683–690 (1966).

    Google Scholar 

  34. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  PubMed  Google Scholar 

  36. McCoy, A.J., Storoni, L.C. & Read, R.J. Simple algorithm for a maximum-likelihood SAD function. Acta Crystallogr. D Biol. Crystallogr. 60, 1220–1228 (2004).

    Article  PubMed  Google Scholar 

  37. Afonine, P.V. et al. phenix.model_vs_data: a high-level tool for the calculation of crystallographic model and data statistics. J. Appl. Crystallogr. 43, 669–676 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  39. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Rehr, J.J., Mustre de Leon, J., Zabinsky, S.I. & Albers, R.C. Theoretical x-ray absorption fine structure standards. J. Am. Chem. Soc. 113, 5135–5140 (1991).

    Article  CAS  Google Scholar 

  41. Mustre de Leon, J., Rehr, J.J., Zabinsky, S.I. & Albers, R.C. Ab initio curved-wave x-ray-absorption fine structure. Phys. Rev. B Condens. Matter 44, 4146–4156 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Glasoe, P.K. & Long, F.A. Use of glass electrodes to measure acidities in deuterium oxide. J. Phys. Chem. 64, 188–190 (1960).

    Article  CAS  Google Scholar 

  43. Sano, A., Takazawa, M. & Takitani, S. High performance liquid chromatography determination of cyanide in urine by pre-column fluorescence derivatization. Biomed. Chromatogr. 3, 209–212 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Tracqui, A., Raul, J.S., Géraut, A., Berthelon, L. & Ludes, B. Determination of blood cyanide by HPLC-MS. J. Anal. Toxicol. 26, 144–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Driesener, R.C. et al. [FeFe]-hydrogenase cyanide ligands derived from S-adenosylmethionine-dependent cleavage of tyrosine. Angew. Chem. Int. Edn Engl. 49, 1687–1690 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the German Research Foundation (DFG) in the SPP1319 (BO 1565/10-2 and ER 222/5), by the European Cooperation in Science and Technology Action CM1201 and the Swiss National Foundation for Scientific Research (SNF) (Doc.Mobility grant nos. P1SKP3-148452 and P1SKP3-155073). Work at the University of Saskatchewan was supported by the Canadian Research Chairs Program (G.N.G.), the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research. J.J.H.C. is a CIHR-Training grant in Health Research Using Synchrotron Techniques (THRUST) Associate. The Stanford Synchrotron Radiation Lightsource is supported by the US Department of Energy and the National Institutes of Health. Work at the Helmholtz Center for Environmental Research, Leipzig, Germany (Department of Analytical Chemistry), was funded by the German Federal Ministry of Education and Research. Work at the University of Strasbourg was supported by the Centre International de Recherche aux Frontières de la Chimie (RFC) and the Centre National des Recherches Scientifiques (CNRS). We thank H. Michel for continuous support and the staff of beamline PXII at the Swiss Light Source for help during data collection.

Author information

Authors and Affiliations

Authors

Contributions

T.W. crystallized the enzyme collected, processed and refined X-ray data, and prepared figures; S.G.H. purified and characterized the enzyme, performed kinetic assays, prepared samples for spectroscopic analyses (EPR, FT-IR, EXAFS and ICP-MS) and carried out CN analyses and EPR measurements; S. Weidenweber processed and refined X-ray data; J.W.K. purified and characterized the enzyme, performed kinetic assays, and prepared samples for ICP-MS analyses; J.J.H.C. and G.N.G. collected and modeled EXAFS data; H.-J.S. conducted ICP-MS analyses; P.H. performed and interpreted FT-IR analyses; T.B. and S. Weber conducted and interpreted EPR measurements; U.E. and M.B. designed the study, analyzed data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ulrich Ermler or Matthias Boll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8 and Supplementary Tables 1–4 (PDF 1018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinert, T., Huwiler, S., Kung, J. et al. Structural basis of enzymatic benzene ring reduction. Nat Chem Biol 11, 586–591 (2015). https://doi.org/10.1038/nchembio.1849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing