Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways

Abstract

The chemical species involved in H2S signaling remain elusive despite the profound and pleiotropic physiological effects elicited by this molecule. The dominant candidate mechanism for sulfide signaling is persulfidation of target proteins. However, the relatively poor reactivity of H2S toward oxidized thiols, such as disulfides, the low concentration of disulfides in the reducing milieu of the cell and the low steady-state concentration of H2S raise questions about the plausibility of persulfide formation via reaction between an oxidized thiol and a sulfide anion or a reduced thiol and oxidized hydrogen disulfide. In contrast, sulfide oxidation pathways, considered to be primarily mechanisms for disposing of excess sulfide, generate a series of reactive sulfur species, including persulfides, polysulfides and thiosulfate, that could modify target proteins. We posit that sulfide oxidation pathways mediate sulfide signaling and that sulfurtransferases ensure target specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of some biologically relevant RSS chemotypes.
Figure 2: Models for H2S interaction with heme proteins.
Figure 3: Potential mechanisms for persulfidation and the resolution of this modification.
Figure 4: Potential complexity associated with uncatalyzed protein modification by polysulfides.
Figure 5: Rhodanese homology domain proteins and persulfide relay system for transpersulfidation.
Figure 6: Sulfide oxidation pathways.

Similar content being viewed by others

References

  1. Russell, M.J. & Hall, A.J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154, 377–402 (1997).

    Article  CAS  Google Scholar 

  2. Wacey, D., Kilburn, M.R., Saunders, M., Cliff, J. & Brasier, M.D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci. 4, 698–702 (2011).

    Article  CAS  Google Scholar 

  3. Anbar, A.D. & Knoll, A.H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Li, C. et al. A stratified redox model for the Ediacaran ocean. Science 328, 80–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Grice, K. et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307, 706–709 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Klotz, M.G., Bryant, D.A. & Hanson, T.E. The microbial sulfur cycle. Front. Microbiol. 2, 241 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Giles, G.I. & Jacob, C. Reactive sulfur species: an emerging concept in oxidative stress. Biol. Chem. 383, 375–388 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Gruhlke, M.C. & Slusarenko, A.J. The biology of reactive sulfur species (RSS). Plant Physiol. Biochem. 59, 98–107 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Li, Q. & Lancaster, J.R. Jr. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 35, 21–34 (2013).

    Article  PubMed  CAS  Google Scholar 

  10. Paulsen, C.E. & Carroll, K.S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633–4679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kabil, O., Motl, N. & Banerjee, R. H2S and its role in redox signaling. Biochim. Biophys. Acta 1844, 1355–1366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hildebrandt, T.M. & Grieshaber, M.K. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J. 275, 3352–3361 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Vitvitsky, V., Yadav, P.K., Kurthen, A. & Banerjee, R. Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides. J. Biol. Chem. 290, 8310–8320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mathai, J.C. et al. No facilitator required for membrane transport of hydrogen sulfide. Proc. Natl. Acad. Sci. USA 106, 16633–16638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Riahi, S. & Rowley, C.N. Why can hydrogen sulfide permeate cell membranes? J. Am. Chem. Soc. 136, 15111–15113 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, K.Y. & Morris, J.C. Kinetics of oxidation of aqueous sulfide by O2 . Environ. Sci. Technol. 6, 529–537 (1972).

    Article  CAS  Google Scholar 

  17. Vitvitsky, V., Kabil, O. & Banerjee, R. High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid. Redox Signal. 17, 22–31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O'Brien, D.J. & Birkner, F.B. Kinetics of oxygenation of reduced sulfur species in aqueous solution. Environ. Sci. Technol. 11, 1114–1120 (1977).

    Article  CAS  Google Scholar 

  19. Carballal, S. et al. Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radic. Biol. Med. 50, 196–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Millis, K.K., Weaver, K.H. & Rabenstein, D.L. Oxidation/reduction potential of glutathione. J. Org. Chem. 58, 4144–4146 (1993).

    Article  CAS  Google Scholar 

  21. Furne, J., Saeed, A. & Levitt, M.D. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1479–R1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Vitvitsky, V. et al. Perturbations in homocysteine-linked redox homeostasis in a murine model for hyperhomocysteinemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R39–R46 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Das, T.N., Huie, R.E., Neta, P. & Padmaja, S. Reduction potential of the sulfhydryl radical: pulse radiolysis and laser flash photolysis studies of the formation and reactions of SH and HSSH in aqueous solutions. J. Phys. Chem. A 103, 5221–5226 (1999).

    Article  CAS  Google Scholar 

  24. Kraus, D.W., Wittenberg, J.B., Jing-Fen, L. & Peisach, J. Hemoglobins of the Lucina pectinata/bacterial symbiosis. I. Molecular properties, kinetics and equilibria of reactions with ligands. J. Biol. Chem. 265, 16054–16059 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Flores, J.F. et al. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proc. Natl. Acad. Sci. USA 102, 2713–2718 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pietri, R. et al. Factors controlling the reactivity of hydrogen sulfide with hemeproteins. Biochemistry 48, 4881–4894 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Keilin, D. On the combination of methaemoglobin with H2S. Proc. R. Soc. Lond., B 113, 393–404 (1933).

    Article  CAS  Google Scholar 

  28. Chatfield, M.J., La Mar, G.N. & Kauten, R.J. Proton NMR characterization of isomeric sulfmyoglobins: preparation, interconversion, reactivity patterns, and structural features. Biochemistry 26, 6939–6950 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Nicholls, P. & Kim, J.K. Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Can. J. Biochem. 60, 613–623 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Pavlik, J.W., Noll, B.C., Oliver, A.G., Schulz, C.E. & Scheidt, W.R. Hydrosulfide (HS) coordination in iron porphyrinates. Inorg. Chem. 49, 1017–1026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brittain, T., Yosaatmadja, Y. & Henty, K. The interaction of human neuroglobin with hydrogen sulphide. IUBMB Life 60, 135–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Poulos, T.L. Soluble guanylate cyclase. Curr. Opin. Struct. Biol. 16, 736–743 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Cavallini, D., Federici, G. & Barboni, E. Interaction of proteins with sulfide. Eur. J. Biochem. 14, 169–174 (1970).

    Article  CAS  PubMed  Google Scholar 

  34. Massey, V. & Edmondson, D. On the mechanism of inactivation of xanthine oxidase by cyanide. J. Biol. Chem. 245, 6595–6598 (1970).

    Article  CAS  PubMed  Google Scholar 

  35. Branzoli, U. & Massey, V. Evidence for an active site persulfide residue in rabbit liver aldehyde oxidase. J. Biol. Chem. 249, 4346–4349 (1974).

    Article  CAS  PubMed  Google Scholar 

  36. Huber, R. et al. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Proc. Natl. Acad. Sci. USA 93, 8846–8851 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gutteridge, S., Tanner, S.J. & Bray, R.C. Comparison of the molybdenum centres of native and desulpho xanthine oxidase. The nature of the cyanide-labile sulphur atom and the nature of the proton-accepting group. Biochem. J. 175, 887–897 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brondino, C.D., Romao, M.J., Moura, I. & Moura, J.J. Molybdenum and tungsten enzymes: the xanthine oxidase family. Curr. Opin. Chem. Biol. 10, 109–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. de Beus, M.D., Chung, J. & Colon, W. Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties. Protein Sci. 13, 1347–1355 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Valentine, W.N., Toohey, J.I., Paglia, D.E., Nakatani, M. & Brockway, R.A. Modification of erythrocyte enzyme activities by persulfides and methanethiol: possible regulatory role. Proc. Natl. Acad. Sci. USA 84, 1394–1398 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krishnan, N., Fu, C., Pappin, D.J. & Tonks, N.K. H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci. Signal. 4, ra86 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mustafa, A.K. et al. H2S signals through protein S-sulfhydration. Sci. Signal. 2, ra72 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Vandiver, M.S. et al. Sulfhydration mediates neuroprotective actions of parkin. Nat. Commun. 4, 1626 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Finkel, T. From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci. Signal. 5, pe10 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Kabil, O. & Banerjee, R. The redox biochemistry of hydrogen sulfide. J. Biol. Chem. 285, 21903–21907 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Libiad, M., Yadav, P.K., Vitvitsky, V., Martinov, M. & Banerjee, R. Organization of the human mitochondrial H2S oxidation pathway. J. Biol. Chem. 289, 30901–30910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yadav, P.K., Yamada, K., Chiku, T., Koutmos, M. & Banerjee, R. Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J. Biol. Chem. 288, 20002–20013 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pestaña, A. & Sols, A. Reversible inactivation by elemental sulfur and mercurials of rat liver serine dehydratase and certain sulfhydryl enzymes. Biochem. Biophys. Res. Commun. 39, 522–529 (1970).

    Article  PubMed  Google Scholar 

  50. Kato, A., Ogura, M. & Suda, M. Control mechanism in the rat liver enzyme system converting L-methionine to L-cystine. 3. Noncompetitive inhibition of cystathionine synthetase-serine dehydratase by elemental sulfur and competitive inhibition of cystathionase-homoserine dehydratase by L-cysteine and L-cystine. J. Biochem. 59, 40–48 (1966).

    Article  CAS  PubMed  Google Scholar 

  51. Toohey, J.I. Sulfhydryl dependence in primary explant hematopoietic cells. Inhibition of growth in vitro with vitamin B12 compounds. Proc. Natl. Acad. Sci. USA 72, 73–77 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Greiner, R. et al. Polysulfides link H2S to protein thiol oxidation. Antioxid. Redox Signal. 19, 1749–1765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kimura, Y. et al. Polysulfides are possible H2S-derived signaling molecules in rat brain. FASEB J. 27, 2451–2457 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Marcia, M., Ermler, U., Peng, G. & Michel, H. The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration. Proc. Natl. Acad. Sci. USA 106, 9625–9630 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. King, A.L. et al. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase–nitric oxide dependent. Proc. Natl. Acad. Sci. USA 111, 3182–3187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koike, S., Ogasawara, Y., Shibuya, N., Kimura, H. & Ishii, K. Polysulfide exerts a protective effect against cytotoxicity caused by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett. 587, 3548–3555 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Mueller, E.G. Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat. Chem. Biol. 2, 185–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Francoleon, N.E., Carrington, S.J. & Fukuto, J.M. The reaction of H2S with oxidized thiols: generation of persulfides and implications to H2S biology. Arch. Biochem. Biophys. 516, 146–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Ono, K. et al. Redox chemistry and chemical biology of HS, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic. Biol. Med. 77, 82–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Ida, T. et al. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc. Natl. Acad. Sci. USA 111, 7606–7611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bordo, D. & Bork, P. The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep. 3, 741–746 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Palenchar, P.M., Buck, C.J., Cheng, H., Larson, T.J. & Mueller, E.G. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J. Biol. Chem. 275, 8283–8286 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Matthies, A., Nimtz, M. & Leimkuhler, S. Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry. Biochemistry 44, 7912–7920 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Noma, A., Sakaguchi, Y. & Suzuki, T. Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res. 37, 1335–1352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ikeuchi, Y., Shigi, N., Kato, J., Nishimura, A. & Suzuki, T. Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol. Cell 21, 97–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Nagahara, N., Yoshii, T., Abe, Y. & Matsumura, T. Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation. J. Biol. Chem. 282, 1561–1569 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Melideo, S.L., Jackson, M.R. & Jorns, M.S. Biosynthesis of a central intermediate in hydrogen sulfide metabolism by a novel human sulfurtransferase and its yeast ortholog. Biochemistry 53, 4739–4753 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Jackson, M.R., Melideo, S.L. & Jorns, M.S. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51, 6804–6815 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Agrò, A.F., Mavelli, I., Cannella, C. & Federici, G. Activation of porcine heart mitochondrial malate dehydrogenase by zero valence sulfur and rhodanese. Biochem. Biophys. Res. Commun. 68, 553–560 (1976).

    Article  PubMed  Google Scholar 

  70. Theissen, U. & Martin, W. Sulfide: quinone oxidoreductase (SQR) from the lugworm Arenicola marina shows cyanide- and thioredoxin-dependent activity. FEBS J. 275, 1131–1139 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Goubern, M., Andriamihaja, M., Nubel, T., Blachier, F. & Bouillaud, F. Sulfide, the first inorganic substrate for human cells. FASEB J. 21, 1699–1706 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Kabil, O. & Banerjee, R. Characterization of patient mutations in human persulfide dioxygenase (ETHE1) involved in H2S catabolism. J. Biol. Chem. 287, 44561–44567 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krussel, L. et al. The mitochondrial sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis. Plant Physiol. 165, 92–104 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Álvarez, C., Garcia, I., Romero, L.C. & Gotor, C. Mitochondrial sulfide detoxification requires a functional isoform O-acetylserine(thiol)lyase C in Arabidopsis thaliana. Mol. Plant 5, 1217–1226 (2012).

    Article  PubMed  CAS  Google Scholar 

  75. Marcia, M., Ermler, U., Peng, G. & Michel, H. A new structure-based classification of sulfide:quinone oxidoreductases. Proteins 78, 1073–1083 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Sakaguchi, M. et al. Sodium thiosulfate attenuates acute lung injury in mice. Anesthesiology 121, 1248–1257 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Snijder, P.M. et al. Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates Angiotensin II-induced hypertensive heart disease in rats. Br. J. Pharmacol. 172, 1494–1504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, L.J. et al. Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina. J. Biol. Chem. 289, 26949–26959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ranguelova, K. et al. Sulfite-mediated oxidation of myeloperoxidase to a free radical: immuno-spin trapping detection in human neutrophils. Free Radic. Biol. Med. 60, 98–106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Togawa, T. et al. High performance liquid chromatographic determination of bound sulfide and sulfite and thiosulfate at their low levels in human serum by pre-column fluorescence derivatization with monobromobimane. Chem. Pharm. Bull. (Tokyo) 40, 3000–3004 (1992).

    Article  CAS  Google Scholar 

  81. Gunnison, A.F. & Jacobsen, D.W. Sulfite hypersensitivity. A critical review. CRC Crit. Rev. Toxicol. 17, 185–214 (1987).

    Article  CAS  PubMed  Google Scholar 

  82. Yarmolinsky, D., Brychkova, G., Fluhr, R. & Sagi, M. Sulfite reductase protects plants against sulfite toxicity. Plant Physiol. 161, 725–743 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Crane, B.R., Siegel, L.M. & Getzoff, E.D. Sulfite reductase structure at 1.6 A: evolution and catalysis for reduction of inorganic anions. Science 270, 59–67 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Holmström, K.M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411–421 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. West, A.P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou, R., Yazdi, A.S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Pan, Y., Schroeder, E.A., Ocampo, A., Barrientos, A. & Shadel, G.S. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab. 13, 668–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mailloux, R.J. & Harper, M.E. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol. Metab. 23, 451–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Sörbo, B. On the formation of thiosulfate from inorganic sulfide by liver tissue and heme compounds. Biochim. Biophys. Acta 27, 324–329 (1958).

    Article  PubMed  Google Scholar 

  90. Baxter, C.F. & Van Reen, R. The oxidation of sulfide to thiosulfate by metalloprotein complexes and by ferritin. Biochim. Biophys. Acta 28, 573–578 (1958).

    Article  CAS  PubMed  Google Scholar 

  91. Smith, R.P. & Gosselin, R.E. On the mechanism of sulfide inactivation by methemoglobin. Toxicol. Appl. Pharmacol. 8, 159–172 (1966).

    Article  CAS  PubMed  Google Scholar 

  92. Valentine, W.N. & Frankenfeld, J.K. 3-Mercaptopyruvate sulfurtransferase (EC 2.8.1.2): a simple assay adapted to human blood cells. Clin. Chim. Acta 51, 205–210 (1974).

    Article  CAS  PubMed  Google Scholar 

  93. Nicholls, P. & Kim, J.K. Oxidation of sulphide by cytochrome aa3. Biochim. Biophys. Acta 637, 312–320 (1981).

    Article  CAS  PubMed  Google Scholar 

  94. Collman, J.P., Ghosh, S., Dey, A. & Decreau, R.A. Using a functional enzyme model to understand the chemistry behind hydrogen sulfide induced hibernation. Proc. Natl. Acad. Sci. USA 106, 22090–22095 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pálinkás, Z. et al. Interactions of hydrogen sulfide with myeloperoxidase. Br. J. Pharmacol. 172, 1516–1532 (2015).

    Article  PubMed  CAS  Google Scholar 

  96. Nakamura, S., Nakamura, M., Yamazaki, I. & Morrison, M. Reactions of ferryl lactoperoxidase (compound II) with sulfide and sulfhydryl compounds. J. Biol. Chem. 259, 7080–7085 (1984).

    Article  CAS  PubMed  Google Scholar 

  97. Searcy, D.G., Whitehead, J.P. & Maroney, M.J. Interaction of Cu,Zn superoxide dismutase with hydrogen sulfide. Arch. Biochem. Biophys. 318, 251–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Bucci, M. et al. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler. Thromb. Vasc. Biol. 30, 1998–2004 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Bucci, M. et al. cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation. PLoS ONE 7, e53319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institutes of Health (GM112455 and HL58984).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruma Banerjee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishanina, T., Libiad, M. & Banerjee, R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11, 457–464 (2015). https://doi.org/10.1038/nchembio.1834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing