Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prolonged and tunable residence time using reversible covalent kinase inhibitors

Abstract

Drugs with prolonged on-target residence times often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here we made progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Using an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrated biochemical residence times spanning from minutes to 7 d. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK for more than 18 h after clearance from the circulation. The inverted cyanoacrylamide strategy was further used to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating the generalizability of the approach. Targeting of noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates 'residence time by design', the ability to modulate and improve the duration of target engagement in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible covalent BTK inhibitors based on inverted cyanoacrylamides.
Figure 2: Prolonged and tunable residence time of reversible covalent BTK inhibitors.
Figure 3: Long-term cellular durability of reversible covalent BTK inhibitors.
Figure 4: Kinase selectivity of inhibitor 9.
Figure 5: Extended pharmacodynamic effect of an orally bioavailable BTK inhibitor.
Figure 6: Inverted cyanoacrylamide FGFR inhibitors with prolonged, tunable residence times.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Copeland, R.A., Pompliano, D.L. & Meek, T.D. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5, 730–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Copeland, R.A. The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety. Expert Opin. Drug Discov. 5, 305–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Lu, H. & Tonge, P.J. Drug-target residence time: critical information for lead optimization. Curr. Opin. Chem. Biol. 14, 467–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo, D., Hillger, J.M., IJzerman, A.P. & Heitman, L.H. Drug-target residence time—a case for G protein-coupled receptors. Med. Res. Rev. 34, 856–892 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Swinney, D.C. et al. A study of the molecular mechanism of binding kinetics and long residence times of human CCR5 receptor small molecule allosteric ligands. Br. J. Pharmacol. 171, 3364–3375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Louvel, J. et al. Agonists for the adenosine A1 receptor with tunable residence time. A case for nonribose 4-amino-6-aryl-5-cyano-2-thiopyrimidines. J. Med. Chem. 57, 3213–3222 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Vilums, M. et al. Structure-kinetic relationships—an overlooked parameter in hit-to-lead optimization: a case of cyclopentylamines as chemokine receptor 2 antagonists. J. Med. Chem. 56, 7706–7714 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Miller, R.M., Paavilainen, V.O., Krishnan, S., Serafimova, I.M. & Taunton, J. Electrophilic fragment-based design of reversible covalent kinase inhibitors. J. Am. Chem. Soc. 135, 5298–5301 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Serafimova, I.M. et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8, 471–476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barf, T. & Kaptein, A. Irreversible protein kinase inhibitors: balancing the benefits and risks. J. Med. Chem. 55, 6243–6262 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Mah, R., Thomas, J.R. & Shafer, C.M. Drug discovery considerations in the design of covalent inhibitors. Bioorg. Med. Chem. 24, 33–39 (2014).

    Article  CAS  Google Scholar 

  12. Kalgutkar, A.S. & Dalvie, D.K. Drug discovery for a new generation of covalent drugs. Expert Opin. Drug Discov. 7, 561–581 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leproult, E., Barluenga, S., Moras, D., Wurtz, J.M. & Winssinger, N. Cysteine mapping in conformationally distinct kinase nucleotide binding sites: application to the design of selective covalent inhibitors. J. Med. Chem. 54, 1347–1355 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Q. et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20, 146–159 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Singh, J., Petter, R.C. & Kluge, A.F. Targeted covalent drugs of the kinase family. Curr. Opin. Chem. Biol. 14, 475–480 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Honigberg, L.A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA 107, 13075–13080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evans, E.K. et al. Inhibition of BTK with CC-292 provides early pharmacodynamics assessment of activity in mice and humans. J. Pharmacol. Exp. Ther. 346, 219–228 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Rankin, A.L. et al. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulonephritis. J. Immunol. 191, 4540–4550 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Benson, M.J. et al. Modeling the clinical phenotype of BTK inhibition in the mature murine immune system. J. Immunol. 193, 185–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, H. et al. Discovery of a potent, covalent BTK inhibitor for B-cell lymphoma. ACS Chem. Biol. 9, 1086–1091 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akinleye, A., Chen, Y., Mukhi, N., Song, Y. & Liu, D. Ibrutinib and novel BTK inhibitors in clinical development. J. Hematol. Oncol. 6, 59 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lou, Y., Owens, T.D., Kuglstatter, A., Kondru, R.K. & Goldstein, D.M. Bruton's tyrosine kinase inhibitors: approaches to potent and selective inhibition, preclinical and clinical evaluation for inflammatory diseases and B cell malignancies. J. Med. Chem. 55, 4539–4550 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Byrd, J.C. et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 369, 32–42 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, M.L. et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 369, 507–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Di Paolo, J.A. et al. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat. Chem. Biol. 7, 41–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, D. et al. RN486, a selective Bruton's tyrosine kinase inhibitor, abrogates immune hypersensitivity responses and arthritis in rodents. J. Pharmacol. Exp. Ther. 341, 90–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Lanning, B.R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuglstatter, A. et al. Insights into the conformational flexibility of Bruton's tyrosine kinase from multiple ligand complex structures. Protein Sci. 20, 428–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Marcotte, D.J. et al. Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Protein Sci. 19, 429–439 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Evans, D.A., Ennis, M.D., Le, T., Mandel, N. & Mandel, G. Asymmetric acylation reactions of chiral imide enolates. The first direct approach to the construction of chiral β-dicarbonyl synthons. J. Am. Chem. Soc. 106, 1154–1156 (1984).

    Article  CAS  Google Scholar 

  32. Lebakken, C.S. et al. Development and validation of a broad-coverage, TR-FRET-based kinase binding assay platform. J. Biomol. Screen. 14, 924–935 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Motulsky, H.J. & Mahan, L.C. The kinetics of competitive radioligand binding predicted by the law of mass action. Mol. Pharmacol. 25, 1–9 (1984).

    CAS  PubMed  Google Scholar 

  34. Copeland, R.A. Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists, 2nd edn. (John Wiley & Sons, 2013).

  35. Hantschel, O. et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc. Natl. Acad. Sci. USA 104, 13283–13288 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eglen, R.M. et al. The use of AlphaScreen technology in HTS: current status. Curr. Chem. Genomics 1, 2–10 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou, W. et al. A structure-guided approach to creating covalent FGFR inhibitors. Chem. Biol. 17, 285–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guagnano, V. et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2, 1118–1133 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Selinsky, B.S., Gupta, K., Sharkey, C.T. & Loll, P.J. Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry 40, 5172–5180 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Swinney, D.C. Can binding kinetics translate to a clinically differentiated drug? From theory to practice. Lett. Drug Des. Discov. 3, 569–574 (2006).

    Article  CAS  Google Scholar 

  41. Lipton, S.A. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat. Rev. Drug Discov. 5, 160–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Vauquelin, G., Bostoen, S., Vanderheyden, P. & Seeman, P. Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch. Pharmacol. 385, 337–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Kapur, S. & Seeman, P. Antipyschotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. J. Psychiatry Neurosci. 25, 161–166 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dubovsky, J.A. et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood 122, 2539–2549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakayama, S. et al. A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding. Drug Metab. Dispos. 37, 1970–1977 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Takakusa, H. et al. Covalent binding and tissue distribution/retention assessment of drugs associated with idiosyncratic drug toxicity. Drug Metab. Dispos. 36, 1770–1779 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIH) (grants GM071434 to J.T. and F32GM087052 to J.M.M.), the University of California San Francisco (UCSF) Stephen & Nancy Grand Multiple Myeloma Translational Initiative (to J.T.), the Academy of Finland (to V.O.P.) and the Sigrid Juselius Foundation (to V.O.P.). We acknowledge the UCSF Mass Spectrometry Facility (supported by NIH grant P41RR001614).

Author information

Authors and Affiliations

Authors

Contributions

J.M.M., V.O.P. and J.T. designed experiments involving compounds 13; J.M.M. and V.O.P. performed experiments and analyzed data for those compounds. J.M.B., A.B., D.T., V.T.P., S.R., P.A.N., D.E.K., M.E.G., J.O.F., T.D.O., E.V., K.A.B., R.J.H. and D.M.G. designed and managed experiments involving compounds 446; J.M.B., A.B., D.T., V.T.P., S.R., D.F., J.S., V.P., T.T., X.L. and D.G.L. performed experiments and analyzed data for those compounds. J.M.B. and J.T. wrote the manuscript with feedback from other authors, and all authors read and approved the manuscript.

Corresponding authors

Correspondence to J Michael Bradshaw or Jack Taunton.

Ethics declarations

Competing interests

J.T., J.M.M. and V.O.P. have filed patent applications on cyanoacrylamide kinase inhibitors (licensed to Principia Biopharma, of which J.T. is a cofounder). J.M.B., A.B., D.T., V.T.P., D.F., J.S., V.P., T.T., X.L., D.G.L., P.A.N., D.E.K., M.E.G., J.O.F., T.D.O., E.V., K.A.B., R.J.H. and D.M.G. are members of Principia Biopharma, which is interested in developing BTK inhibitors for therapeutic applications.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–25, Supplementary Tables 1–6 and Supplementary Note. (PDF 4153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradshaw, J., McFarland, J., Paavilainen, V. et al. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat Chem Biol 11, 525–531 (2015). https://doi.org/10.1038/nchembio.1817

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing