Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV gp41–mediated membrane fusion occurs at edges of cholesterol-rich lipid domains

Abstract

Lipid rafts in plasma membranes have emerged as possible platforms for the entry of HIV and other viruses into cells. However, little is known about how lipid phase heterogeneity contributes to viral entry because of the fine-grained and still poorly understood complexity of biological membranes. We used model systems mimicking HIV envelopes and T cell membranes and found that raft-like liquid-ordered (Lo-phase) lipid domains were necessary and sufficient for efficient membrane targeting and fusion. Interestingly, membrane binding and fusion were low in homogeneous liquid-disordered (Ld-phase) and Lo-phase membranes, indicating that lipid phase heterogeneity is essential. The HIV fusion peptide preferentially targeted to Lo-Ld boundary regions and promoted full fusion at the interface between ordered and disordered lipids. Ld-phase vesicles proceeded only to hemifusion. Thus, we propose that edges but not areas of raft-like ordered lipid domains are vital for HIV entry and membrane fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase-separated domains and cholesterol are required for HIV FP to fuse HIV envelope– and T cell membrane–mimicking lipid mixtures.
Figure 2: Membrane-bound HIV FP preferentially binds phase-separated Lo+d liposomes and targets Lo-Ld phase boundaries in phase-separated membranes.
Figure 3: HIV FP liposomes are targeted to Lo-Ld phase boundary regions in GUVs.
Figure 4: HIV FP liposomes fuse at Lo-Ld phase boundaries in supported membranes.
Figure 5: HIV-1 pseudoviruses bind preferentially to Lo-Ld phase boundaries in supported lipid bilayers or GUVs composed of bSM-DOPC-Ch (2:2:1).
Figure 6: Lipid domain boundaries in viral and cellular target membranes promote HIV gp41–mediated membrane fusion.

Similar content being viewed by others

References

  1. Singer, S.J. & Nicolson, G.L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    CAS  PubMed  Google Scholar 

  2. Engelman, D.M. Membranes are more mosaic than fluid. Nature 438, 578–580 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Kiessling, V., Wan, C. & Tamm, L.K. Domain coupling in asymmetric lipid bilayers. Biochim. Biophys. Acta 1788, 64–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, D.A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Pike, L.J. The challenge of lipid rafts. J. Lipid Res. 50 (suppl.), S323–S328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jacobson, K., Mouritsen, O.G. & Anderson, R.G.W. Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9, 7–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Baumgart, T., Hess, S.T. & Webb, W.W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Campbell, S.M., Crowe, S.M. & Mak, J. Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J. Clin. Virol. 22, 217–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Liao, Z., Cimakasky, L.M., Hampton, R., Nguyen, D.H. & Hildreth, J.E. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res. Hum. Retroviruses 17, 1009–1019 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. White, J.M., Delos, S.E., Brecher, M. & Schornberg, K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit. Rev. Biochem. Mol. Biol. 43, 189–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilen, C.B., Tilton, J.C. & Doms, R.W. Molecular mechanisms of HIV entry. Adv. Exp. Med. Biol. 726, 223–242 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Melikyan, G.B. HIV entry: a game of hide-and-fuse? Curr. Opin. Virol. 4, 1–7 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Chernomordik, L.V. & Kozlov, M.M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartesaghi, A., Merk, A., Borgnia, M.J., Milne, J.L. & Subramaniam, S. Prefusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy. Nat. Struct. Mol. Biol. 20, 1352–1357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Julien, J.P. et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342, 1477–1483 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Tamm, L.K., Lee, J. & Liang, B. Capturing glimpses of an elusive HIV gp41 prehairpin fusion intermediate. Structure 22, 1225–1226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Doms, R.W. & Moore, J.P. HIV-1 membrane fusion: targets of opportunity. J. Cell Biol. 151, F9–F14 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waheed, A.A. & Freed, E.O. Lipids and membrane microdomains in HIV-1 replication. Virus Res. 143, 162–176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Graham, D.R., Chertova, E., Hilburn, J.M., Arthur, L.O. & Hildreth, J.E. Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with beta-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. J. Virol. 77, 8237–8248 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crane, J.M. & Tamm, L.K. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys. J. 86, 2965–2979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han, X. & Tamm, L.K. A host-guest system to study structure-function relationships of membrane fusion peptides. Proc. Natl. Acad. Sci. USA 97, 13097–13102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tamm, L.K. & Han, X. Viral fusion peptides: a tool set to disrupt and connect biological membranes. Biosci. Rep. 20, 501–518 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Brügger, B. et al. The HIV lipidome: a raft with an unusual composition. Proc. Natl. Acad. Sci. USA 103, 2641–2646 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tamm, L.K. Cell entry of influenza virus by membrane fusion. In Influenza Viruses—Facts and Perspectives (ed. Schmidt, M.F.G.) 48–55 (Grosse Verlag, 2007).

  28. Feigenson, G.W. Phase behavior of lipid mixtures. Nat. Chem. Biol. 2, 560–563 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Domanska, M.K., Kiessling, V., Stein, A., Fasshauer, D. & Tamm, L.K. Single vesicle millisecond fusion kinetics reveals number of SNARE complexes optimal for fast SNARE-mediated membrane fusion. J. Biol. Chem. 284, 32158–32166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiessling, V. et al. Rapid fusion of synaptic vesicles with reconstituted target SNARE membranes. Biophys. J. 104, 1950–1958 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kilby, J.M. et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat. Med. 4, 1302–1307 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. de Almeida, R.F., Fedorov, A. & Prieto, M. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85, 2406–2416 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Honerkamp-Smith, A.R. et al. Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys. J. 95, 236–246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Veatch, S.L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, J., Wu, J. & Veatch, S.L. Adhesion stabilizes robust lipid heterogeneity in supercritical membranes at physiological temperature. Biophys. J. 104, 825–834 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Machta, B.B., Papanikolaou, S., Sethna, J.P. & Veatch, S.L. Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality. Biophys. J. 100, 1668–1677 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edidin, M. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Lai, A.L., Moorthy, A.E., Li, Y. & Tamm, L.K. Fusion activity of HIV gp41 fusion domain is related to its secondary structure and depth of membrane insertion in a cholesterol-dependent fashion. J. Mol. Biol. 418, 3–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Qiang, W. & Weliky, D.P. HIV fusion peptide and its cross-linked oligomers: efficient syntheses, significance of the trimer in fusion activity, correlation of beta strand conformation with membrane cholesterol, and proximity to lipid headgroups. Biochemistry 48, 289–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Lipowsky, R. Domain-induced budding of fluid membranes. Biophys. J. 64, 1133–1138 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Garcia-Sáez, A.J., Chiantia, S. & Schwille, P. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282, 33537–33544 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Jensen, M.H., Morris, E.J. & Simonsen, A.C. Domain shapes, coarsening, and random patterns in ternary membranes. Langmuir 23, 8135–8141 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Tayebi, L. et al. Long-range interlayer alignment of intralayer domains in stacked lipid bilayers. Nat. Mater. 11, 1074–1080 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Moissoglu, K. et al. Regulation of Rac1 translocation and activation by membrane domains and their boundaries. J. Cell Sci. 127, 2565–2576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chamberlain, L.H., Burgoyne, R.D. & Gould, G.W. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc. Natl. Acad. Sci. USA 98, 5619–5624 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murray, D.H. & Tamm, L.K. Clustering of syntaxin-1A in model membranes is modulated by phosphatidylinositol 4,5-bisphosphate and cholesterol. Biochemistry 48, 4617–4625 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Mukai, A. et al. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells. Exp. Cell Res. 315, 3052–3063 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Ishii, M. et al. RANKL-induced expression of tetraspanin CD9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogenesis. J. Bone Miner. Res. 21, 965–976 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Sleight, S.B. et al. Isolation and proteomic analysis of mouse sperm detergent-resistant membrane fractions: evidence for dissociation of lipid rafts during capacitation. Biol. Reprod. 73, 721–729 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Angelova, M.I. & Dimitrov, D.S. Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986).

    Article  CAS  Google Scholar 

  52. Wagner, M.L. & Tamm, L.K. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys. J. 79, 1400–1414 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Struck, D.K., Hoekstra, D. & Pagano, R.E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20, 4093–4099 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Kiessling, V., Crane, J.M. & Tamm, L.K. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys. J. 91, 3313–3326 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01 AI30577 (to L.K.T.) and R21 AI103601 (to J.M.W.). We thank E. Nelson for technical help with the production of pseudoviruses.

Author information

Authors and Affiliations

Authors

Contributions

S.-T.Y., V.K., J.M.W. and L.K.T. designed research; S.-T.Y. performed most experiments; J.A.S. provided pseudotyped viruses; S.-T.Y., V.K., J.M.W. and L.K.T. analyzed data; and S.-T.Y., V.K. and L.K.T. wrote the paper.

Corresponding author

Correspondence to Lukas K Tamm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8 and Supplementary Table 1. (PDF 10999 kb)

Binding of LUVs to a GUV imaged by epifluorescence microscopy. (AVI 1389 kb)

Fusion of LUVs to a supported bilayer observed by TIRF microscopy. (AVI 9111 kb)

41589_2015_BFnchembio1800_MOESM444_ESM.avi

Fusion of a single liposome to a supported bilayer monitored by simultaneous observation of lipid (DiD) mixing (left panel) and content (sulforhodamine) release (center panel) and the DiD and sulforhodamine channels combined (right panel). (AVI 803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ST., Kiessling, V., Simmons, J. et al. HIV gp41–mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat Chem Biol 11, 424–431 (2015). https://doi.org/10.1038/nchembio.1800

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1800

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology