Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective inhibitors of the FK506-binding protein 51 by induced fit

Abstract

The FK506-binding protein 51 (FKBP51, encoded by the FKBP5 gene) is an established risk factor for stress-related psychiatric disorders such as major depression. Drug discovery for FKBP51 has been hampered by the inability to pharmacologically differentiate against the structurally similar but functional opposing homolog FKBP52, and all known FKBP ligands are unselective. Here, we report the discovery of the potent and highly selective inhibitors of FKBP51, SAFit1 and SAFit2. This new class of ligands achieves selectivity for FKBP51 by an induced-fit mechanism that is much less favorable for FKBP52. By using these ligands, we demonstrate that selective inhibition of FKBP51 enhances neurite elongation in neuronal cultures and improves neuroendocrine feedback and stress-coping behavior in mice. Our findings provide the structural and functional basis for the development of mechanistically new antidepressants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective inhibition of FKBP51 or FKBP52 inversely affects neurite outgrowth.
Figure 2: Induced-fit binding of selective FKBP51 inhibitors.
Figure 3: Selective inhibition of FKBP51 enhances neurite outgrowth.
Figure 4: SAFit2 enhances regulation of stress hormone secretion and active stress-coping behavior in mice.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Cioffi, D.L., Hubler, T.R. & Scammell, J.G. Organization and function of the FKBP52 and FKBP51 genes. Curr. Opin. Pharmacol. 11, 308–313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanchez, E.R. Chaperoning steroidal physiology: lessons from mouse genetic models of Hsp90 and its cochaperones. Biochim. Biophys. Acta 1823, 722–729 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt, M.V., Paez-Pereda, M., Holsboer, F. & Hausch, F. The prospect of FKBP51 as a drug target. ChemMedChem 7, 1351–1359 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T. & Cox, M.B. FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol. Metab. 22, 481–490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gaali, S., Gopalakrishnan, R., Wang, Y., Kozany, C. & Hausch, F. The chemical biology of immunophilin ligands. Curr. Med. Chem. 18, 5355–5379 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Cheung-Flynn, J. et al. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol. Endocrinol. 19, 1654–1666 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Tranguch, S. et al. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc. Natl. Acad. Sci. USA 102, 14326–14331 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, Z. et al. FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol. Endocrinol. 20, 2682–2694 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Yong, W. et al. Essential role for co-chaperone Fkbp52 but not Fkbp51 in androgen receptor–mediated signaling and physiology. J. Biol. Chem. 282, 5026–5036 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Attwood, B.K. et al. Neuropsin cleaves EphB2 in the amygdala to control anxiety. Nature 473, 372–375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartmann, J. et al. The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology 62, 332–339 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. O'Leary, J.C. III et al. A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51. PLoS ONE 6, e24840 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Touma, C. et al. FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol. Psychiatry 70, 928–936 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Albu, S. et al. Deficiency of FK506-binding protein (FKBP) 51 alters sleep architecture and recovery sleep responses to stress in mice. J. Sleep Res. 23, 176–185 (2014).

    Article  PubMed  Google Scholar 

  15. Zannas, A.S. & Binder, E.B. Gene-environment interactions at the FKBP5 locus: sensitive periods, mechanisms and pleiotropism. Genes Brain Behav. 13, 25–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Zou, Y.-F. et al. Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neurosci. Lett. 484, 56–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Blackburn, E.A. & Walkinshaw, M.D. Targeting FKBP isoforms with small-molecule ligands. Curr. Opin. Pharmacol. 11, 365–371 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Fabian, A.-K. et al. InterAKTions with FKBPs—mutational and Pharmacological Exploration. PLoS ONE 8, e57508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hausch, F., Kozany, C., Theodoropoulou, M. & Fabian, A.-K. FKBPs and the Akt/mTOR pathway. Cell Cycle 12, 2366–2370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bracher, A. et al. Crystal structures of the free and ligand-bound FK1–FK2 domain segment of FKBP52 reveal a flexible inter-domain hinge. J. Mol. Biol. 425, 4134–4144 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Bracher, A., Kozany, C., Thost, A.K. & Hausch, F. Structural characterization of the PPIase domain of FKBP51, a cochaperone of human Hsp90. Acta Crystallogr. D Biol. Crystallogr. 67, 549–559 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. März, A.M., Fabian, A.-K., Kozany, C., Bracher, A. & Hausch, F. Large FK506-binding proteins shape the pharmacology of rapamycin. Mol. Cell. Biol. 33, 1357–1367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clackson, T. et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl. Acad. Sci. USA 95, 10437–10442 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Banaszynski, L.A., Chen, L.-C., Maynard-Smith, L.A., Ooi, A.G.L. & Wandless, T.J.A. Rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien-Pilipuk, G. & Galigniana, M.D. Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth. J. Neurochem. 115, 716–734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Evans, D.A., Ennis, M.D., Le, T., Mandel, N. & Mandel, G. Asymmetric acylation reactions of chiral imide enolates. The first direct approach to the construction of chiral β-dicarbonyl synthons. J. Am. Chem. Soc. 106, 1154–1156 (1984).

    Article  CAS  Google Scholar 

  27. Myers, A.G. et al. Pseudoephedrine as a practical chiral auxiliary for the synthesis of highly enantiomerically enriched carboxylic acids, alcohols, aldehydes, and ketones. J. Am. Chem. Soc. 119, 6496–6511 (1997).

    Article  CAS  Google Scholar 

  28. Gopalakrishnan, R. et al. Evaluation of synthetic FK506 analogues as ligands for the FK506-binding proteins 51 and 52. J. Med. Chem. 55, 4114–4122 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Gopalakrishnan, R. et al. Exploration of pipecolate sulfonamides as binders of the FK506-binding proteins 51 and 52. J. Med. Chem. 55, 4123–4131 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. et al. Increasing the efficiency of ligands for FK506-binding protein 51 by conformational control. J. Med. Chem. 56, 3922–3935 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Weiwad, M. et al. Comparative analysis of calcineurin inhibition by complexes of immunosuppressive drugs with human FK506 binding proteins. Biochemistry 45, 15776–15784 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Price, R.D. et al. FK1706, a novel non-immunosuppressive immunophilin: neurotrophic activity and mechanism of action. Eur. J. Pharmacol. 509, 11–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Revill, W.P. et al. Genetically engineered analogs of ascomycin for nerve regeneration. J. Pharmacol. Exp. Ther. 302, 1278–1285 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Babine, R.E., Villafranca, J.E. & Gold, B.G. FKBP immunophilin patents for neurological disorders. Expert. Opin. Ther. Patents 15, 555–573 (2005).

    Article  CAS  Google Scholar 

  35. Gerard, M., Deleersnijder, A., Demeulemeester, J., Debyser, Z. & Baekelandt, V. Unraveling the role of peptidyl-prolyl isomerases in neurodegeneration. Mol. Neurobiol. 44, 13–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Gold, B.G., Densmore, V., Shou, W., Matzuk, M.M. & Gordon, H.S. Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506. J. Pharmacol. Exp. Ther. 289, 1202–1210 (1999).

    CAS  PubMed  Google Scholar 

  37. Sugimoto, Y. et al. Differences between mice strains in response to paroxetine in the forced swimming test: involvement of serotonergic or noradrenergic systems. Eur. J. Pharmacol. 672, 121–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Touma, C. Stress and affective disorders: animal models elucidating the molecular basis of neuroendocrine-behavior interactions. Pharmacopsychiatry 44 (suppl. 1), S15–S26 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Hartmann, J. et al. Fkbp52 heterozygosity alters behavioral, endocrine and neurogenetic parameters under basal and chronic stress conditions in mice. Psychoneuroendocrinology 37, 2009–2021 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Raison, C.L. & Miller, A.H. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am. J. Psychiatry 160, 1554–1565 (2003).

    Article  PubMed  Google Scholar 

  41. Ising, M. et al. Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression-a potential biomarker? Biol. Psychiatry 62, 47–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Klengel, T. et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci. 16, 33–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Kozany, C., März, A., Kress, C. & Hausch, F. Fluorescent probes to characterise FK506-binding proteins. ChemBioChem 10, 1402–1410 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Brittain, D.E. et al. Total synthesis of antascomicin B. Angew. Chem. Int. Edn. Engl. 44, 2732–2737 (2005).

    Article  CAS  Google Scholar 

  45. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Evans, P. Scala. Joint CCP4 and ESF-EACBM Newsletter 33, 22–24 (1997).

    Google Scholar 

  47. French, G.S. & Wilson, K.S. On the treatment of negative intensity observations. Acta Crystallogr. A 34, 517–525 (1978).

    Google Scholar 

  48. Collaborative Computational Project N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr 50, 760–763 (1994).

  49. Vagin, A.A. & Isupov, M.N. Spherically averaged phased translation function and its application to the search for molecules and fragments in electron-density maps. Acta Crystallogr. D Biol. Crystallogr. 57, 1451–1456 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  51. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  52. Schüttelkopf, A.W. & van Aalten, D.M.F. PRODRG—a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Delano, W.L. The Pymol Molecular Graphics System (DeLano Scientific, 2002).

  54. Draenert, R. et al. Comparison of overlapping peptide sets for detection of antiviral CD8 and CD4 T cell responses. J. Immunol. Methods 275, 19–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Beurel, E., Harrington, L.E. & Jope, R.S. Inflammatory T helper 17 cells promote depression-like behavior in mice. Biol. Psychiatr. 73, 622–630 (2013).

    Article  CAS  Google Scholar 

  56. Zhang, Y., Huo, M., Zhou, J. & Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 99, 306–314 (2010).

    Article  PubMed  Google Scholar 

  57. Touma, C. et al. Mice selected for high versus low stress reactivity: a new animal model for affective disorders. Psychoneuroendocrinology 33, 839–862 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the M4 Award 2011 from the Bayrisches Staatsministerium für Wirtschaft, Infrastruktur Verkehr und Technologie (to F.H.). We thank A. Vogel, S. Giusti, D. Refojo (Max Planck Institute of Psychiatry) and M. Baumann (Lead Discovery Center) for experimental advice and L. Tietze, T. Gerlach and B. Hoogeland for technical support. We are indebted to E. Weyher (Max Planck Institute of Biochemistry) and to C. Dubler (Ludwig-Maximilians-University Munich) for high-resolution MS and NMR measurements. We thank S. Ley for a sample of antascomycin B (University of Cambridge, UK); the Joint Structural Biology Group staff at the European Synchrotron Radiation Facility in Grenoble, France; the staff at beamline X10SA of the Swiss Synchrotron Light Source (SLS) in Villigen, Switzerland; and F. Holsboer for continuous support.

Author information

Authors and Affiliations

Authors

Contributions

F.H. conceived the project; S.G. designed and synthesized FKBP ligands; G.R. contributed to the design of ligand 1, iFit 4 and SAFit2; A.K. and S.C. performed neurite outgrowth experiments; C.K. and C.S. performed FKBP binding assays; P.F.-V. and O.X.F.A. supported primary neuron experiments; C.N. and M.U. measured PK parameters; A.B. performed crystallographic analyses; J.H., G.B., M.V.S. and C.T. performed animal behavioral testing. A.S.Z., R.D. and E.B.B. designed and performed the immune experiments. S.G., A.K., P.F.-V., O.X.F.A., A.B. and F.H. wrote the manuscript.

Corresponding author

Correspondence to Felix Hausch.

Ethics declarations

Competing interests

Declaration: A.K., S.G., G.R., A.B. and F.H. have filed a patent application for selective FKBP51 inhibitors (EP 13185247). E.B. is co-inventor on European Patent no. EP 1687443 B1, 'FKBP5: a novel target for antidepressant therapy'.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2, Supplementary Figures 1–14 and Supplementary Note. (PDF 2659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaali, S., Kirschner, A., Cuboni, S. et al. Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol 11, 33–37 (2015). https://doi.org/10.1038/nchembio.1699

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1699

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research