Covalent docking of large libraries for the discovery of chemical probes

An Erratum to this article was published on 17 February 2015

This article has been updated

Abstract

Chemical probes that form a covalent bond with a protein target often show enhanced selectivity, potency and utility for biological studies. Despite these advantages, protein-reactive compounds are usually avoided in high-throughput screening campaigns. Here we describe a general method (DOCKovalent) for screening large virtual libraries of electrophilic small molecules. We apply this method prospectively to discover reversible covalent fragments that target distinct protein nucleophiles, including the catalytic serine of AmpC β-lactamase and noncatalytic cysteines in RSK2, MSK1 and JAK3 kinases. We identify submicromolar to low-nanomolar hits with high ligand efficiency, cellular activity and selectivity, including what are to our knowledge the first reported reversible covalent inhibitors of JAK3. Crystal structures of inhibitor complexes with AmpC and RSK2 confirm the docking predictions and guide further optimization. As covalent virtual screening may have broad utility for the rapid discovery of chemical probes, we have made the method freely available through an automated web server (http://covalent.docking.org/).

Figure 1: Overview of the DOCKovalent methodology.
Figure 2: Boronic acid inhibitors of AmpC predicted by virtual screening.
Figure 3: Cyanoacrylamide inhibitors of RSK2 and MSK1 predicted by covalent docking.
Figure 4: Reversible covalent JAK3 inhibitors discovered via docking.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 22 December 2014

    In the version of this article initially published, the scaffold structure shown for compounds 33 and 34 was incorrect in Figure 4a, with a nitrogen atom misplaced within the five-membered ring moiety. The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Weerapana, E., Simon, G.M. & Cravatt, B.F. Disparate proteome reactivity profiles of carbon electrophiles. Nat. Chem. Biol. 4, 405–407 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Blum, G., von Degenfeld, G., Merchant, M.J., Blau, H.M. & Bogyo, M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol. 3, 668–677 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Cohen, M.S., Zhang, C., Shokat, K.M. & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308, 1318–1321 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Chang, J.W., Nomura, D.K. & Cravatt, B.F. A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. Chem. Biol. 18, 476–484 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Robertson, J.G. Mechanistic basis of enzyme-targeted drugs. Biochemistry 44, 5561–5571 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Drahl, C., Cravatt, B.F. & Sorensen, E.J. Protein-reactive natural products. Angew. Chem. Int. Edn Engl. 44, 5788–5809 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Kathman, S.G., Xu, Z. & Statsyuk, A.V. A fragment-based method to discover irreversible covalent inhibitors of cysteine proteases. J. Med. Chem. 57, 4969–4974 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Sirois, S., Hatzakis, G., Wei, D., Du, Q. & Chou, K.C. Assessment of chemical libraries for their druggability. Comput. Biol. Chem. 29, 55–67 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Baell, J.B. & Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Potashman, M.H. & Duggan, M.E. Covalent modifiers: an orthogonal approach to drug design. J. Med. Chem. 52, 1231–1246 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Totrov, M. & Abagyan, R. Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr. Opin. Struct. Biol. 18, 178–184 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Shoichet, B.K. Virtual screening of chemical libraries. Nature 432, 862–865 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Kitchen, D.B., Decornez, H., Furr, J.R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Glick, M. & Jacoby, E. The role of computational methods in the identification of bioactive compounds. Curr. Opin. Chem. Biol. 15, 540–546 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Ouyang, X. et al. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J. Comput. Chem. 34, 326–336 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Toledo Warshaviak, D., Golan, G., Borrelli, K.W., Zhu, K. & Kalid, O. Structure-based virtual screening approach for discovery of covalently bound ligands. J. Chem. Inf. Model. 54, 1941–1950 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Zhu, K. et al. Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. J. Chem. Inf. Model. 54, 1932–1940 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Schröder, J. et al. Docking-based virtual screening of covalently binding ligands: an orthogonal lead discovery approach. J. Med. Chem. 56, 1478–1490 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. 20

    De Cesco, S. et al. Virtual screening and computational optimization for the discovery of covalent prolyl oligopeptidase inhibitors with activity in human cells. J. Med. Chem. 55, 6306–6315 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Mysinger, M.M. & Shoichet, B.K. Rapid context-dependent ligand desolvation in molecular docking. J. Chem. Inf. Model. 50, 1561–1573 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Jacoby, G.A. AmpC β-lactamases. Clin. Microbiol. Rev. 10.1128/CMR.00036-08 (2009).

  23. 23

    Livermore, D.M. & Mushtaq, S. Activity of biapenem (RPX2003) combined with the boronate β-lactamase inhibitor RPX7009 against carbapenem-resistant Enterobacteriaceae. J. Antimicrob. Chemother. 68, 1825–1831 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Eidam, O. et al. Fragment-guided design of subnanomolar β-lactamase inhibitors active in vivo. Proc. Natl. Acad. Sci. USA 109, 17448–17453 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Wikler, M.A. Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement (Clinical and Laboratory Standards Institute, 2010).

  26. 26

    Serafimova, I.M. et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8, 471–476 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Miller, R.M., Paavilainen, V.O., Krishnan, S., Serafimova, I.M. & Taunton, J. Electrophilic fragment-based design of reversible covalent kinase inhibitors. J. Am. Chem. Soc. 135, 5298–5301 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Doehn, U. et al. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol. Cell 35, 511–522 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Kang, S. et al. p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells. J. Clin. Invest. 120, 1165–1177 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Park, J. et al. RAS-MAPK-MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature 498, 325–331 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Le, N.T. et al. A crucial role for p90RSK-mediated reduction of ERK5 transcriptional activity in endothelial dysfunction and atherosclerosis. Circulation 127, 486–499 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S. & Coleman, R.G. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52, 1757–1768 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Yamaoka, K. et al. The Janus kinases (Jaks). Genome Biol. 5, 253 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Kremer, J.M. et al. A phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) versus placebo in combination with background methotrexate in patients with active rheumatoid arthritis and an inadequate response to methotrexate alone. Arthritis Rheum. 64, 970–981 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Jiang, J.K. et al. Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-y l)-3-oxopropanenitrile (CP-690,550). J. Med. Chem. 51, 8012–8018 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Clark, J.D., Flanagan, M.E. & Telliez, J.B. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 57, 5023–5038 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Honigberg, L.A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA 107, 13075–13080 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Smith, A.J., Zhang, X., Leach, A.G. & Houk, K.N. Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J. Med. Chem. 52, 225–233 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Hermann, J.C. et al. Structure-based activity prediction for an enzyme of unknown function. Nature 448, 775–779 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Schwöbel, J.A. et al. Prediction of michael-type acceptor reactivity toward glutathione. Chem. Res. Toxicol. 23, 1576–1585 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  42. 42

    Fischer, M., Coleman, R.G., Fraser, J.S. & Shoichet, B.K. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat. Chem. 6, 575–583 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Gasteiger, J., Rudolph, C. & Sadowski, J. Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Computer Methodology 3, 537–547 (1990).

    CAS  Article  Google Scholar 

  44. 44

    Li, J. et al. Extension of the platform of applicability of the SM5. 42R universal solvation model. Theor. Chem. Acc. 103, 9–63 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Hawkins, P.C., Skillman, A.G., Warren, G.L., Ellingson, B.A. & Stahl, M.T. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 50, 572–584 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Mysinger, M.M., Carchia, M., Irwin, J.J. & Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55, 6582–6594 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Gilson, M.K., Sharp, K.A. & Honig, B.H. Calculating the electrostatic potential of molecules in solution: method and error assessment. J. Comput. Chem. 9, 327–335 (1988).

    CAS  Article  Google Scholar 

  48. 48

    Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    ADAMS, J. et al. Boronic acids and esters as inhibitors of fatty acid amide hydrolase. WO Patent 2,008,063,300 (2008).

  50. 50

    Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Brozell, S.R. et al. Evaluation of DOCK 6 as a pose generation and database enrichment tool. J. Comput. Aided Mol. Des. 26, 749–773 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Del Mar, E.G., Largman, C., Brodrick, J.W., Fassett, M. & Geokas, M.C. Substrate specificity of human pancreatic elastase 2. Biochemistry 19, 468–472 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    Pouvreau, L. et al. Effect of pea and bovine trypsin inhibitors on wild-type and modified trypsins. FEBS Lett. 423, 167–172 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Rodríguez-Martínez, J.A., Rivera-Rivera, I., Sola, R.J. & Griebenow, K. Enzymatic activity and thermal stability of PEG-alpha-chymotrypsin conjugates. Biotechnol. Lett. 31, 883–887 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55

    Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    CAS  Article  Google Scholar 

  56. 56

    Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58

    Moriarty, N.W., Grosse-Kunstleve, R.W. & Adams, P.D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D Biol. Crystallogr. 65, 1074–1080 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Painter, J. & Merritt, E.A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 39, 109–111 (2006).

    CAS  Article  Google Scholar 

  60. 60

    Knight, Z.A., Feldman, M.E., Balla, A., Balla, T. & Shokat, K.M. A membrane capture assay for lipid kinase activity. Nat. Protoc. 2, 2459–2466 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Computational methods supported by US National Institutes of Health (NIH) grant GM59957, and the web portal was supported by NIH GM71896. This work was also supported by the Ministère de la Recherche et de la Technologie, the Institut national de la santé et de la recherche médicale (UMR Inserm U1071), the Institut National de la Recherche Agronomique (USC-2018) and the Centre Hospitalier Régional Universitaire de Clermont-Ferrand, France (to R.B.). We thank M. Fischer and D. Shaya for help with X-ray data collection, A. O'Donoghue (UCSF) for protease substrates, P. Coffino and S. Menant (UCSF) for the proteasome and the PA26 complex sample, X. Ouyang (Nanyang Technological University) for the r.m.s. calculation software used for the β-lactam benchmark, and S. Barelier for reading of this manuscript. N.L. was supported by an EMBO long-term fellowship (ALTF 1121-2011) and the University of California–San Francisco Program for Breakthrough Biomedical Research, which is funded in part by the Sandler Foundation. S.K. was supported by a fellowship from the California Tobacco-Related Disease Research Program (no. 19FT-0091). P.C. was supported by Howard Hughes Medical Institute Predoctoral Fellowship.

Author information

Affiliations

Authors

Contributions

B.K.S. and J.T. directed the project. N.L. designed the algorithms, wrote the covalent docking code and executed the docking simulations. N.L. performed β-lactamase assays and crystallography with help from O.E. J.J.I. designed and implemented the DOCKovalent web tool. P.C. performed the proteasome experiments. L.G. and R.B. performed bacterial cell culture experiments. R.M.M. executed synthetic chemistry, kinase assays, crystallography and cell-based assays for RSK2 and MSK1. S.K. and K.U. performed synthetic chemistry for JAK3, S.K. performed JAK1 and JAK3 kinase assays. N.L., R.M.M., B.K.S. and J.T. wrote the paper. All authors contributed to the manuscript in its final form.

Corresponding authors

Correspondence to Brian K Shoichet or Jack Taunton.

Ethics declarations

Competing interests

J.T., R.M.M. and S.K. have filed patent applications on cyanoacrylamide kinase inhibitors (licensed to Principia Biopharma, of which J.T. is a cofounder).

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–11, Supplementary Figures 1–17 and Supplementary Notes 1 and 2. (PDF 7163 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

London, N., Miller, R., Krishnan, S. et al. Covalent docking of large libraries for the discovery of chemical probes. Nat Chem Biol 10, 1066–1072 (2014). https://doi.org/10.1038/nchembio.1666

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing