Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics

Abstract

Activation of the ERK pathway is a hallmark of cancer, and targeting of upstream signaling partners led to the development of approved drugs. Recently, SCH772984 has been shown to be a selective and potent ERK1/2 inhibitor. Here we report the structural mechanism for its remarkable selectivity. In ERK1/2, SCH772984 induces a so-far-unknown binding pocket that accommodates the piperazine-phenyl-pyrimidine decoration. This new binding pocket was created by an inactive conformation of the phosphate-binding loop and an outward tilt of helix αC. In contrast, structure determination of SCH772984 with the off-target haspin and JNK1 revealed two canonical but distinct type I binding modes. Notably, the new binding mode with ERK1/2 was associated with slow binding kinetics in vitro as well as in cell-based assay systems. The described binding mode of SCH772984 with ERK1/2 enables the design of a new type of specific kinase inhibitors with prolonged on-target activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustrating inhibition modes of kinase inhibitors.
Figure 2: SCH772984 has a unique binding mode in ERK1/2.
Figure 3: Selectivity and off-target binding modes of SCH772984.
Figure 4: Slow kinetics of SCH772984 both in vitro and in cell-based systems.
Figure 5: Structural analysis of inhibitor interactions and mutagenesis of key residues that modulate binding kinetics.
Figure 6: Effects of ERK and PARP inhibitors on BRCA2-deficient cell survival.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hatzivassiliou, G. et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Chapman, P.B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whittaker, S.R. et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 3, 350–362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29, 3085–3096 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Joseph, E.W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. USA 107, 14903–14908 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Corcoran, R.B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brady, D.C. et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509, 492–496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poulikakos, P.I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAFV600E. Nature 480, 387–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flaherty, K.T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hatzivassiliou, G. et al. ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol. Cancer Ther. 11, 1143–1154 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Ohori, M. et al. Identification of a selective ERK inhibitor and structural determination of the inhibitor–ERK2 complex. Biochem. Biophys. Res. Commun. 336, 357–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Aronov, A.M. et al. Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control. J. Med. Chem. 52, 6362–6368 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, Z. et al. Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery? ACS Chem. Biol. 9, 1230–1241 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, J. et al. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463, 501–506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hari, S.B., Merritt, E.A. & Maly, D.J. Sequence determinants of a specific inactive protein kinase conformation. Chem. Biol. 20, 806–815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morris, E.J. et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 3, 742–750 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, F., Strand, A., Robbins, D., Cobb, M.H. & Goldsmith, E.J. Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature 367, 704–711 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H. & Goldsmith, E.J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Karaman, M.W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Eswaran, J. et al. Structure and functional characterization of the atypical human kinase haspin. Proc. Natl. Acad. Sci. USA 106, 20198–20203 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fedorov, O., Niesen, F.H. & Knapp, S. Kinase inhibitor selectivity profiling using differential scanning fluorimetry. Methods Mol. Biol. 795, 109–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Fedorov, O. et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc. Natl. Acad. Sci. USA 104, 20523–20528 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wood, E.R. et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 64, 6652–6659 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Fox, T. et al. A single amino acid substitution makes ERK2 susceptible to pyridinyl imidazole inhibitors of p38 MAP kinase. Protein Sci. 7, 2249–2255 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kinoshita, T. et al. Crystal structure of human mono-phosphorylated ERK1 at Tyr204. Biochem. Biophys. Res. Commun. 377, 1123–1127 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Gruenbaum, L.M. et al. Inhibition of pro-inflammatory cytokine production by the dual p38/JNK2 inhibitor BIRB796 correlates with the inhibition of p38 signaling. Biochem. Pharmacol. 77, 422–432 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Pargellis, C. et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 9, 268–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Bullock, A.N. et al. Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation. Structure 17, 352–362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chaikuad, A. et al. Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies. Biochem. J. 459, 59–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Lucet, I.S. et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 107, 176–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Kwiatkowski, N. et al. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat. Chem. Biol. 6, 359–368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carlos, A.R. et al. ARF triggers senescence in Brca2-deficient cells by altering the spectrum of p53 transcriptional targets. Nat. Commun. 4, 2697 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Kraakman-van der Zwet, M. et al. Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol. Cell. Biol. 22, 669–679 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Evers, B. et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin. Cancer Res. 14, 3916–3925 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Bryant, H.E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Polo, S.E. & Jackson, S.P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 25, 409–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hashimoto, Y., Ray Chaudhuri, A., Lopes, M. & Costanzo, V. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol. 17, 1305–1311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McCabe, N. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66, 8109–8115 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Guimarães, C.R. et al. Understanding the impact of the P-loop conformation on kinase selectivity. J. Chem. Inf. Model. 51, 1199–1204 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Hari, S.B., Perera, B.G., Ranjitkar, P., Seeliger, M.A. & Maly, D.J. Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src. ACS Chem. Biol. 8, 2734–2743 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Copeland, R.A., Pompliano, D.L. & Meek, T.D. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5, 730–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Swinney, D.C. The role of binding kinetics in therapeutically useful drug action. Curr. Opin. Drug Discov. Devel. 12, 31–39 (2009).

    CAS  PubMed  Google Scholar 

  47. Selzer, T., Albeck, S. & Schreiber, G. Rational design of faster associating and tighter binding protein complexes. Nat. Struct. Biol. 7, 537–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Schmidtke, P., Luque, F.J., Murray, J.B. & Barril, X. Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. J. Am. Chem. Soc. 133, 18903–18910 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Keates, T. et al. Expressing the human proteome for affinity proteomics: optimising expression of soluble protein domains and in vivo biotinylation. N. Biotechnol. 29, 515–525 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  53. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Oza, V. et al. Discovery of checkpoint kinase inhibitor (S)-5-(3-fluorophenyl)-N-(piperidin-3-yl)-3-ureidothiophene-2-carboxamide (AZD7762) by structure-based design and optimization of thiophenecarboxamide ureas. J. Med. Chem. 55, 5130–5142 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.K. is supported by the Structural Genomics Consortium, a registered charity (number 1097737) that receives funds from AbbVie, Bayer, Boehringer Ingelheim, the Canada Foundation for Innovation, the Canadian Institutes for Health Research, Genome Canada, GlaxoSmithKline, Janssen, Lilly Canada, the Novartis Research Foundation, the Ontario Ministry of Economic Development and Innovation, Pfizer, Takeda and the Wellcome Trust (092809/Z/10/Z). A.C. is supported by the European Union FP7 Grant No. 278568 'PRIMES' (Protein interaction machines in oncogenic EGF receptor signalling). Work in M.T.'s laboratory is supported by Cancer Research UK, the EMBO Young Investigator Program and The Royal Society, and E.T. is funded by a Medical Research Council PhD Studentship. We thank the staff at Diamond Light Source for assistance during data collection at the synchrotron and H. Lee (Seoul National University) for providing the sheep anti-BRCA2 antibody.

Author information

Authors and Affiliations

Authors

Contributions

A.C. purified all of the proteins and determined crystal structures and biophysical characterization. N.S.G. and Y.L. synthesized inhibitors and provided enzymatic screening data. E.M.C.T. and J.Z. developed cellular assays. A.C., M.T. and S.K. wrote the paper with assistance from all co-authors.

Corresponding authors

Correspondence to Madalena Tarsounas or Stefan Knapp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1, Supplementary Figures 1–13 and Supplementary Notes. (PDF 5199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaikuad, A., M C Tacconi, E., Zimmer, J. et al. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nat Chem Biol 10, 853–860 (2014). https://doi.org/10.1038/nchembio.1629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1629

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer