Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis

Abstract

Proteases are ubiquitous in nature, whereas naturally occurring peptide ligases, enzymes catalyzing the reverse reactions of proteases, are rare occurrences. Here we describe the discovery of butelase 1, to our knowledge the first asparagine/aspartate (Asx) peptide ligase to be reported. This highly efficient enzyme was isolated from Clitoria ternatea, a cyclic peptide–producing medicinal plant. Butelase 1 shares 71% sequence identity and the same catalytic triad with legumain proteases but does not hydrolyze the protease substrate of legumain. Instead, butelase 1 cyclizes various peptides of plant and animal origin with yields greater than 95%. With Kcat values of up to 17 s−1 and catalytic efficiencies as high as 542,000 M−1 s−1, butelase 1 is the fastest peptide ligase known. Notably, butelase 1 also displays broad specificity for the N-terminal amino acids of the peptide substrate, thus providing a new tool for C terminus–specific intermolecular peptide ligations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MS characterization of peptide cyclase activity.
Figure 2: Isolation, characterization and homology modeling of butelase 1.
Figure 3: Kinetic characterization of butelase 1 as a peptide cyclase.
Figure 4: Cyclodimer formation of kB1.
Figure 5: Acceptor specificity of butelase-mediated peptide ligation.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

Protein Data Bank

References

  1. Cascales, L. & Craik, D.J. Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org. Biomol. Chem. 8, 5035–5047 (2010).

    Article  CAS  Google Scholar 

  2. Craik, D.J. Chemistry—seamless proteins tie up their loose ends. Science 311, 1563–1564 (2006).

    Article  Google Scholar 

  3. Wong, C.T. et al. Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew. Chem. Int. Edn Engl. 51, 5620–5624 (2012).

    Article  CAS  Google Scholar 

  4. Eisenbrandt, R. et al. Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J. Biol. Chem. 274, 22548–22555 (1999).

    Article  CAS  Google Scholar 

  5. Jack, R.W., Tagg, J.R. & Ray, B. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59, 171–200 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sivonen, K., Leikoski, N., Fewer, D.P. & Jokela, J. Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 86, 1213–1225 (2010).

    Article  CAS  Google Scholar 

  7. Tang, Y.Q. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286, 498–502 (1999).

    Article  CAS  Google Scholar 

  8. Cole, A.M. et al. Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc. Natl. Acad. Sci. USA 99, 1813–1818 (2002).

    Article  CAS  Google Scholar 

  9. Luckett, S. et al. High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J. Mol. Biol. 290, 525–533 (1999).

    Article  CAS  Google Scholar 

  10. Craik, D.J., Daly, N.L., Bond, T. & Waine, C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336 (1999).

    Article  CAS  Google Scholar 

  11. Arnison, P.G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  Google Scholar 

  12. Trauger, J.W., Kohli, R.M., Mootz, H.D., Marahiel, M.A. & Walsh, C.T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407, 215–218 (2000).

    Article  CAS  Google Scholar 

  13. Sieber, S.A. & Marahiel, M.A. Learning from nature's drug factories: nonribosomal synthesis of macrocyclic peptides. J. Bacteriol. 185, 7036–7043 (2003).

    Article  CAS  Google Scholar 

  14. Haase, J. & Lanka, E. A specific protease encoded by the conjugative DNA transfer systems of IncP and Ti plasmids is essential for pilus synthesis. J. Bacteriol. 179, 5728–5735 (1997).

    Article  CAS  Google Scholar 

  15. Lee, J., McIntosh, J., Hathaway, B.J. & Schmidt, E.W. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. J. Am. Chem. Soc. 131, 2122–2124 (2009).

    Article  CAS  Google Scholar 

  16. Barber, C.J. et al. The two-step biosynthesis of cyclic peptides from linear precursors in a member of the plant family Caryophyllaceae involves cyclization by a serine protease-like enzyme. J. Biol. Chem. 288, 12500–12510 (2013).

    Article  CAS  Google Scholar 

  17. Craik, D.J. Host-defense activities of cyclotides. Toxins 4, 139–156 (2012).

    Article  CAS  Google Scholar 

  18. Gruber, C.W. et al. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20, 2471–2483 (2008).

    Article  CAS  Google Scholar 

  19. Saska, I. et al. An asparaginyl endopeptidase mediates in vivo protein backbone cyclization. J. Biol. Chem. 282, 29721–29728 (2007).

    Article  CAS  Google Scholar 

  20. Nguyen, G.K. et al. Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family. J. Biol. Chem. 286, 24275–24287 (2011).

    Article  CAS  Google Scholar 

  21. Poth, A.G. et al. Discovery of cyclotides in the Fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem. Biol. 6, 345–355 (2011).

    Article  CAS  Google Scholar 

  22. Kembhavi, A.A., Buttle, D.J., Knight, C.G. & Barrett, A.J. The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Arch. Biochem. Biophys. 303, 208–213 (1993).

    Article  CAS  Google Scholar 

  23. Sojka, D. et al. IrAE—an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 37, 713–724 (2007).

    Article  CAS  Google Scholar 

  24. Nguyen, G.K., Lim, W.H., Nguyen, P.Q. & Tam, J.P. Novel cyclotides and uncyclotides with highly shortened precursors from Chassalia chartacea and effects of methionine oxidation on bioactivities. J. Biol. Chem. 287, 17598–17607 (2012).

    Article  CAS  Google Scholar 

  25. Conlan, B.F. et al. Insights into processing and cyclization events associated with biosynthesis of the cyclic peptide kalata B1. J. Biol. Chem. 287, 28037–28046 (2012).

    Article  CAS  Google Scholar 

  26. Lee, J. & Bogyo, M. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem. Biol. 5, 233–243 (2010).

    Article  CAS  Google Scholar 

  27. Becker, C. et al. Purification, cDNA cloning and characterization of proteinase-B, an asparagine-specific endopeptidase from germinating vetch (Vicia-sativa L) seeds. Eur. J. Biochem. 228, 456–462 (1995).

    Article  CAS  Google Scholar 

  28. Abe, Y. et al. Asparaginyl endopeptidase of jack bean-seeds—purification, characterization, and high utility in protein-sequence analysis. J. Biol. Chem. 268, 3525–3529 (1993).

    CAS  PubMed  Google Scholar 

  29. Dall, E. & Brandstetter, H. Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation. Proc. Natl. Acad. Sci. USA 110, 10940–10945 (2013).

    Article  CAS  Google Scholar 

  30. Hackeng, T.M., Griffin, J.H. & Dawson, P.E. Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc. Natl. Acad. Sci. USA 96, 10068–10073 (1999).

    Article  CAS  Google Scholar 

  31. Mao, H., Hart, S.A., Schink, A. & Pollok, B.A. Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc. 126, 2670–2671 (2004).

    Article  CAS  Google Scholar 

  32. Tam, J.P. & Wong, C.T. Chemical synthesis of circular proteins. J. Biol. Chem. 287, 27020–27025 (2012).

    Article  CAS  Google Scholar 

  33. Tam, J.P., Lu, Y.A., Yang, J.L. & Chiu, K.W. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl. Acad. Sci. USA 96, 8913–8918 (1999).

    Article  CAS  Google Scholar 

  34. Kohli, R.M., Trauger, J.W., Schwarzer, D., Marahiel, M.A. & Walsh, C.T. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. Biochemistry 40, 7099–7108 (2001).

    Article  CAS  Google Scholar 

  35. Ton-That, H., Liu, G., Mazmanian, S.K., Faull, K.F. & Schneewind, O. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA 96, 12424–12429 (1999).

    Article  CAS  Google Scholar 

  36. Xu, M.Q. & Evans, T.C. Jr. Intein-mediated ligation and cyclization of expressed proteins. Methods. 24, 257–277 (2001).

    Article  CAS  Google Scholar 

  37. Bolscher, J.G.M. et al. Sortase A as a tool for high-yield histatin cyclization. FASEB J. 25, 2650–2658 (2011).

    Article  CAS  Google Scholar 

  38. Jia, X. et al. Semienzymatic cyclization of disulfide-rich peptides using sortase A. J. Biol. Chem. 289, 6627–6638 (2014).

    Article  CAS  Google Scholar 

  39. Kimura, R.H., Tran, A.T. & Camarero, J.A. Biosynthesis of the cyclotide Kalata B1 by using protein splicing. Angew. Chem. Int. Edn Engl. 45, 973–976 (2006).

    Article  CAS  Google Scholar 

  40. Austin, J., Kimura, R.H., Woo, Y.H. & Camarero, J.A. In vivo biosynthesis of an Ala-scan library based on the cyclic peptide SFTI-1. Amino Acids 38, 1313–1322 (2010).

    Article  CAS  Google Scholar 

  41. Gould, A. et al. Recombinant production of rhesus theta-defensin-1 (RTD-1) using a bacterial expression system. Mol. Biosyst. 8, 1359–1365 (2012).

    Article  CAS  Google Scholar 

  42. Austin, J., Wang, W., Puttamadappa, S., Shekhtman, A. & Camarero, J.A. Biosynthesis and biological screening of a genetically encoded library based on the cyclotide MCoTI-I. ChemBioChem 10, 2663–2670 (2009).

    Article  CAS  Google Scholar 

  43. Young, T.S. et al. Evolution of cyclic peptide protease inhibitors. Proc. Natl. Acad. Sci. USA 108, 11052–11056 (2011).

    Article  CAS  Google Scholar 

  44. Aboye, T.L. & Camarero, J.A. Biological synthesis of circular polypeptides. J. Biol. Chem. 287, 27026–27032 (2012).

    Article  CAS  Google Scholar 

  45. Koehnke, J. et al. The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain. Nat. Struct. Mol. Biol. 19, 767–772 (2012).

    Article  CAS  Google Scholar 

  46. Min, W. & Jones, D.H. In-vitro splicing of concanavalin-a is catalyzed by asparaginyl endopeptidase. Nat. Struct. Biol. 1, 502–504 (1994).

    Article  CAS  Google Scholar 

  47. Gillon, A.D. et al. Biosynthesis of circular proteins in plants. Plant J. 53, 505–515 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bogyo at Stanford University for providing the legumain-specific probe LP-1 and R. Wang at Nanyang Technological University for helpful comments on this manuscript. This work was supported in part by the Singapore National Research Foundation grant NRF-CRP8-2011-05.

Author information

Authors and Affiliations

Authors

Contributions

G.K.T.N. designed the experiments and isolated and characterized butelase 1. S.W. performed the 1D NMR and homology modeling of butelase 1. Y.Q. synthesized the peptide libraries. X.H. evaluated the intermolecular ligation efficiency. Y.L. performed the kinetic studies for conotoxin, thanatin and histatin. J.P.T. initiated, planned, supervised and edited the manuscript.

Corresponding author

Correspondence to James P Tam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3, Supplementary Figures 1–15 and Supplementary Note 1. (PDF 6225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, G., Wang, S., Qiu, Y. et al. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10, 732–738 (2014). https://doi.org/10.1038/nchembio.1586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing