Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide

Abstract

Sirtuins, a family of histone deacetylases, have a fiercely debated role in regulating lifespan. In contrast with recent observations, here we find that overexpression of sir-2.1, the ortholog of mammalian SirT1, does extend Caenorhabditis elegans lifespan. Sirtuins mandatorily convert NAD+ into nicotinamide (NAM). We here find that NAM and its metabolite, 1-methylnicotinamide (MNA), extend C. elegans lifespan, even in the absence of sir-2.1. We identify a previously unknown C. elegans nicotinamide-N-methyltransferase, encoded by a gene now named anmt-1, to generate MNA from NAM. Disruption and overexpression of anmt-1 have opposing effects on lifespan independent of sirtuins, with loss of anmt-1 fully inhibiting sir-2.1–mediated lifespan extension. MNA serves as a substrate for a newly identified aldehyde oxidase, GAD-3, to generate hydrogen peroxide, which acts as a mitohormetic reactive oxygen species signal to promote C. elegans longevity. Taken together, sirtuin-mediated lifespan extension depends on methylation of NAM, providing an unexpected mechanistic role for sirtuins beyond histone deacetylation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Role of sirtuins within metabolism of NA.
Figure 2: Effects of NA, NAM and MNA on C. elegans lifespan in the presence and absence of sir-2.1.
Figure 3: Disruption and overexpression of NNMT/ANMT-1 indicate that MNA is a key regulator of longevity in wild-type and sir-2.1–overexpressing nematodes.
Figure 4: MNA serves as a substrate for AOx1/GAD-3 to form hydrogen peroxide.
Figure 5: MNA induces a transient ROS signal that is crucial for C. elegans lifespan extension.
Figure 6: A deacetylation-independent mechanism for sirtuin function in extending lifespan.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. 1

    Nogueiras, R. et al. Sirtuins: physiological modulators of metabolism. Physiol. Rev. 92, 1479–1514 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Sinclair, D.A., Mills, K. & Guarente, L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277, 1313–1316 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Lin, S.J. et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344–348 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Anderson, R.M., Bitterman, K.J., Wood, J.G., Medvedik, O. & Sinclair, D.A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Kaeberlein, M., Kirkland, K.T., Fields, S. & Kennedy, B.K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, E296 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7

    Schulz, T.J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280–293 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Tissenbaum, H.A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Viswanathan, M. & Guarente, L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477, E1–E2 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Rizki,, G. et al. The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet 7, e1002235 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Rogina, B. & Helfand, S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA 101, 15998–16003 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Banerjee, K.K. et al. dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep 2, 1485–1491 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Burnett, C. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Boily, G. et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3, e1759 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15

    Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Gossmann, T.I. et al. NAD+ biosynthesis and salvage—a phylogenetic perspective. FEBS J. 279, 3355–3363 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Cantoni, G.L. Methylation of nicotinamide with soluble enzyme system from rat liver. J. Biol. Chem. 189, 203–216 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Fukushima, T. et al. Radical formation site of cerebral complex I and Parkinson′s disease. J. Neurosci. Res. 42, 385–390 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Ristow, M. & Zarse, K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol. 45, 410–418 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    van der Horst, A., Schavemaker, J.M., Pellis-van Berkel, W. & Burgering, B.M. The Caenorhabditis elegans nicotinamidase PNC-1 enhances survival. Mech. Ageing Dev. 128, 346–349 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Hashimoto, T., Horikawa, M., Nomura, T. & Sakamoto, K. Nicotinamide adenine dinucleotide extends the lifespan of Caenorhabditis elegans mediated by sir-2.1 and daf-16. Biogerontology 11, 31–43 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Schmeisser, S. et al. Neuronal ROS signaling rather than AMPK/sirtuin-mediated energy sensing links dietary restriction to lifespan extension. Mol. Metab. 2, 92–102 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Kundu, T.K., Hille, R., Velayutham, M. & Zweier, J.L. Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues. Arch. Biochem. Biophys. 460, 113–121 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Sawyer, J.M. et al. Overcoming redundancy: an RNAi enhancer screen for morphogenesis genes in Caenorhabditis elegans. Genetics 188, 549–564 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Panoutsopoulos, G.I. & Beedham, C. Enzymatic oxidation of phthalazine with guinea pig liver aldehyde oxidase and liver slices: inhibition by isovanillin. Acta Biochim. Pol. 51, 943–951 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Crawford, D.l., Sutherland, J.B., Pometto, A.L., III & Miller, J.M. Production of an aromatic aldehyde oxidase by Streptomyces viridosporus. Arch. Microbiol. 131, 351–355 (1982).

    CAS  Article  Google Scholar 

  27. 27

    Zarse, K. et al. Impaired insulin/IGF1-signaling extends life span by promoting mitochondrial l-proline catabolism to induce a transient ROS signal. Cell Metab. 15, 451–465 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Bishop, N.A. & Guarente, L. Two neurons mediate diet-restriction–induced longevity in C. elegans. Nature 447, 545–549 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Maeda, K. et al. Aldehyde oxidase 1 gene is regulated by Nrf2 pathway. Gene 505, 374–378 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Link, C.D. & Johnson, C.J. Reporter transgenes for study of oxidant stress in Caenorhabditis elegans. Methods Enzymol. 353, 497–505 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Van Raamsdonk, J.M. & Hekimi, S. Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl. Acad. Sci. USA 109, 5785–5790 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Yang, W. & Hekimi, S. Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans. Aging Cell 9, 433–447 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Ristow, M. et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA 106, 8665–8670 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Pan, Y., Schroeder, E.A., Ocampo, A., Barrientos, A. & Shadel, G.S. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab. 13, 668–678 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Webster, B.R., Lu, Z., Sack, M.N. & Scott, I. The role of sirtuins in modulating redox stressors. Free Radic. Biol. Med. 52, 281–290 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Merksamer, P.I. et al. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY) 5, 144–150 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Gebicki, J. & Chlopicki, S. Method for treating hypertriglyceridemia, dyslipidemia and hyperchlosterolemia with a 1-methylnicotinamide salt. US Patent 7,935,717 B2 10 (2011).

  40. 40

    Nordestgaard, B.G., Benn, M., Schnohr, P. & Tybjaerg-Hansen, A. Triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. J. Am. Med. Assoc. 298, 299–308 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Brown, B.G. et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med. 345, 1583–1592 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Canner, P.L. et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8, 1245–1255 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Warburton, D.E., Nicol, C.W. & Bredin, S.S. Health benefits of physical activity: the evidence. CMAJ 174, 801–809 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Chłopicki, S. et al. Single bout of endurance exercise increases NNMT activity in the liver and MNA concentration in plasma. Pharmacol. Rep. 64, 369–376 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Ulanovskaya, O.A., Zuhl, A.M. & Cravatt, B.F. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat. Chem. Biol. 9, 300–306 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Parsons, R.B. et al. The expression of nicotinamide N-methyltransferase increases ATP synthesis and protects SH-SY5Y neuroblastoma cells against the toxicity of Complex I inhibitors. Biochem. J. 436, 145–155 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Mouchiroud, L. et al. The NAD+/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Segref, A. & Hoppe, T. Analysis of ubiquitin-dependent proteolysis in Caenorhabditis elegans. Methods Mol. Biol. 832, 531–544 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Janssen, A.J. et al. Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin. Chem. 53, 729–734 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Musfeld, C., Biollaz, J., Belaz, N., Kesselring, U.W. & Decosterd, L.A. Validation of an HPLC method for the determination of urinary and plasma levels of N1-methylnicotinamide, an endogenous marker of renal cationic transport and plasma flow. J. Pharm. Biomed. Anal. 24, 391–404 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51

    Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Priebe, S., Linde, J., Albrecht, D., Guthke, R. & Brakhage, A.A. FungiFun: a web-based application for functional categorization of fungal genes and proteins. Fungal Genet. Biol. 48, 353–358 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Wingender, E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief. Bioinform. 9, 326–332 (2008).

    CAS  Article  Google Scholar 

  56. 56

    Blackwell, T.K., Bowerman, B., Priess, J.R. & Weintraub, H. Formation of a monomeric DNA binding domain by Skn-1 bZIP and homeodomain elements. Science 266, 621–628 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

Most of the C. elegans strains used in this work were provided by the Caenorhabditis Genetics Center (University of Minnesota), which is funded by the US National Institutes of Health (NIH) Office of Research Infrastructure Programs (P40 OD010440). The strains LG389 and LG390 were a kind gift of L. Guarente and M. Viswanathan (both from Massachusetts Institute of Technology). The excellent technical assistance of I. Heinze, B. Laube, A. Müller, S. Richter and W. Scheiding as well as the excellent secretarial assistance of M. Schalowski are gratefully acknowledged. The RNA sequencing data contained in this manuscript were funded by the research program of the Jena Centre for Systems Biology of Ageing (JenAge) funded by the German Ministry for Education and Research (Bundesministerium für Bildung und Forschung; support code BMBF 0315581). D.A.S. is supported by grants from the NIH and National Institute on Aging, the United Mitochondrial Disease Foundation and the Glenn Medical Foundation.

Author information

Affiliations

Authors

Contributions

K.S. and J.M. designed, performed, and evaluated all of the experiments with the following exceptions: M.G. and M.P. performed next-generation sequencing analysis of mRNA, whereas sample provision, RNA extraction and quality control were done by K.S. Bioinformatical evaluation was done by S.P., R.G., I.H. and S. Schuster. Promoter analysis and gene classification was done by K.S. and J.M. A.S. and T.H. helped with strain constructions. S.W., D.K., A.P., M.B., S. Schmeisser, K.Z., N.L.P., Y.K., D.A.S. and H.Y.C. were involved in the study design and sample contribution and contributed several assays. The entire work was designed and supervised by M.R. The manuscript was written by K.S., J.M. and M.R. All of the authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Michael Ristow.

Ethics declarations

Competing interests

D.S. is a consultant and inventor on patents licensed to GlaxoSmithKline, PA, a company developing sirtuin-based medicines.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–6 and Supplementary Tables 1 and 2. (PDF 1379 kb)

Supplementary Data Set 1

MNA-regulated genes (XLS 6906 kb)

Supplementary Data Set 2

NA-regulated genes (XLS 6815 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmeisser, K., Mansfeld, J., Kuhlow, D. et al. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol 9, 693–700 (2013). https://doi.org/10.1038/nchembio.1352

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing