Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A propofol binding site on mammalian GABAA receptors identified by photolabeling

This article has been updated


Propofol is the most important intravenous general anesthetic in current clinical use. It acts by potentiating GABAA (γ-aminobutyric acid type A) receptors, but where it binds to this receptor is not known and has been a matter of some debate. We synthesized a new propofol analog photolabeling reagent whose biological activity is very similar to that of propofol. We confirmed that this reagent labeled known propofol binding sites in human serum albumin that have been identified using X-ray crystallography. Using a combination of protiated and deuterated versions of the reagent to label mammalian receptors in intact membranes, we identified a new binding site for propofol in GABAA receptors consisting of both β3 homopentamers and α1β3 heteropentamers. The binding site is located within the β subunit at the interface between the transmembrane domains and the extracellular domain and lies close to known determinants of anesthetic sensitivity in the transmembrane segments TM1 and TM2.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of ortho-propofol diazirine.
Figure 2: Labeling HSA with ortho-propofol diazirine.
Figure 3: Labeling GABAA receptors with ortho-propofol diazirine.

Change history

  • 27 September 2013

    In the version of this article initially published online, two bars indicating experimental conditions above the current traces in Figure 1a were misplaced. The error has been corrected for the PDF and HTML versions of this article.


  1. Hales, T.G. & Lambert, J.J. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br. J. Pharmacol. 104, 619–628 (1991).

    Article  CAS  Google Scholar 

  2. Jurd, R. et al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit. FASEB J. 17, 250–252 (2003).

    Article  CAS  Google Scholar 

  3. Zezula, J., Slany, A. & Sieghart, W. Interaction of allosteric ligands with GABAA receptors containing one, two, or three different subunits. Eur. J. Pharmacol. 301, 207–214 (1996).

    Article  CAS  Google Scholar 

  4. Davies, P.A., Kirkness, E.F. & Hales, T.G. Modulation by general anaesthetics of rat GABAA receptors comprised of α1 β3 and β3 subunits expressed in human embryonic kidney 293 cells. Br. J. Pharmacol. 120, 899–909 (1997).

    Article  CAS  Google Scholar 

  5. Feng, H.J. & Macdonald, R.L. Multiple actions of propofol on αβγ and αβδ GABAA receptors. Mol. Pharmacol. 66, 1517–1524 (2004).

    Article  CAS  Google Scholar 

  6. Jones, M.V., Harrison, N.L., Pritchett, D.B. & Hales, T.G. Modulation of the GABAA receptor by propofol is independent of the γ subunit. J. Pharmacol. Exp. Ther. 274, 962–968 (1995).

    CAS  PubMed  Google Scholar 

  7. Krasowski, M.D. et al. α subunit isoform influences GABAA receptor modulation by propofol. Neuropharmacology 36, 941–949 (1997).

    Article  CAS  Google Scholar 

  8. Lam, D.W. & Reynolds, J.N. Modulatory and direct effects of propofol on recombinant GABAA receptors expressed in Xenopus oocytes: influence of α- and γ2-subunits. Brain Res. 784, 179–187 (1998).

    Article  CAS  Google Scholar 

  9. Franks, N.P. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 9, 370–386 (2008).

    Article  CAS  Google Scholar 

  10. Moraga-Cid, G., Yevenes, G.E., Schmalzing, G., Peoples, R.W. & Aguayo, L.G. A single phenylalanine residue in the main intracellular loop of α1 γ-aminobutyric acid type A and glycine receptors influences their sensitivity to propofol. Anesthesiology 115, 464–473 (2011).

    Article  CAS  Google Scholar 

  11. O'Shea, S.M., Williams, C.A. & Jenkins, A. Inverse effects on gating and modulation caused by a mutation in the M2–M3 linker of the GABAA receptor γ subunit. Mol. Pharmacol. 76, 641–651 (2009).

    Article  CAS  Google Scholar 

  12. Krasowski, M.D. et al. Propofol and other intravenous anesthetics have sites of action on the γ-aminobutyric acid type A receptor distinct from that for isoflurane. Mol. Pharmacol. 53, 530–538 (1998).

    Article  CAS  Google Scholar 

  13. Krasowski, M.D., Nishikawa, K., Nikolaeva, N., Lin, A. & Harrison, N.L. Methionine 286 in transmembrane domain 3 of the GABAA receptor β subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Neuropharmacology 41, 952–964 (2001).

    Article  CAS  Google Scholar 

  14. Chang, C.S., Olcese, R. & Olsen, R.W. A single M1 residue in the β2 subunit alters channel gating of GABAA receptor in anesthetic modulation and direct activation. J. Biol. Chem. 278, 42821–42828 (2003).

    Article  CAS  Google Scholar 

  15. Siegwart, R., Krahenbuhl, K., Lambert, S. & Rudolph, U. Mutational analysis of molecular requirements for the actions of general anaesthetics at the γ-aminobutyric acid A receptor subtype, α1β2γ2. BMC Pharmacol. 3, 13 (2003).

    Article  Google Scholar 

  16. Richardson, J.E. et al. A conserved tyrosine in the β2 subunit M4 segment is a determinant of γ-aminobutyric acid type A receptor sensitivity to propofol. Anesthesiology 107, 412–418 (2007).

    Article  CAS  Google Scholar 

  17. Williams, C.A., Bell, S.V. & Jenkins, A. A residue in loop 9 of the β2-subunit stabilizes the closed state of the GABAA receptor. J. Biol. Chem. 285, 7281–7287 (2010).

    Article  CAS  Google Scholar 

  18. Siegwart, R., Jurd, R. & Rudolph, U. Molecular determinants for the action of general anesthetics at recombinant α(2)β(3)γ(2)γ-aminobutyric acid(A) receptors. J. Neurochem. 80, 140–148 (2002).

    Article  CAS  Google Scholar 

  19. Nury, H. et al. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469, 428–431 (2011).

    Article  CAS  Google Scholar 

  20. Bali, M. & Akabas, M.H. Defining the propofol binding site location on the GABAA receptor. Mol. Pharmacol. 65, 68–76 (2004).

    Article  CAS  Google Scholar 

  21. Li, G.D., Chiara, D.C., Cohen, J.B. & Olsen, R.W. Numerous classes of general anesthetics inhibit etomidate binding to γ-aminobutyric acid type A (GABAA) receptors. J. Biol. Chem. 285, 8615–8620 (2010).

    Article  CAS  Google Scholar 

  22. Chen, Z.W. et al. Neurosteroid analog photolabeling of a site in the third transmembrane domain of the β3 subunit of the GABAA receptor. Mol. Pharmacol. 82, 408–419 (2012).

    Article  CAS  Google Scholar 

  23. Chen, Z.W., Fuchs, K., Sieghart, W., Townsend, R.R. & Evers, A.S. Deep amino acid sequencing of native brain GABAA receptors using high-resolution mass spectrometry. Mol. Cell. Proteomics 11, M111.011445 (2012).

    Article  Google Scholar 

  24. Waud, D.R. On biological assays involving quantal responses. J. Pharmacol. Exp. Ther. 183, 577–607 (1972).

    CAS  PubMed  Google Scholar 

  25. Bhattacharya, A.A., Curry, S. & Franks, N.P. Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. J. Biol. Chem. 275, 38731–38738 (2000).

    Article  CAS  Google Scholar 

  26. Bright, D.P. et al. Identification of anesthetic binding sites on human serum albumin using a novel etomidate photolabel. J. Biol. Chem. 282, 12038–12047 (2007).

    Article  CAS  Google Scholar 

  27. Kang, S.U., Fuchs, K., Sieghart, W. & Lubec, G. Gel-based mass spectrometric analysis of recombinant GABAA receptor subunits representing strongly hydrophobic transmembrane proteins. J. Proteome Res. 7, 3498–3506 (2008).

    Article  CAS  Google Scholar 

  28. Hibbs, R.E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474, 54–60 (2011).

    Article  CAS  Google Scholar 

  29. Wooltorton, J.R., McDonald, B.J., Moss, S.J. & Smart, T.G. Identification of a Zn2+ binding site on the murine GABAA receptor complex: dependence on the second transmembrane domain of β subunits. J. Physiol. (Lond.) 505, 633–640 (1997).

    Article  CAS  Google Scholar 

  30. James, R. & Glen, J.B. Synthesis, biological evaluation, and preliminary structure-activity considerations of a series of alkylphenols as intravenous anesthetic agents. J. Med. Chem. 23, 1350–1357 (1980).

    Article  CAS  Google Scholar 

  31. Cestari, I.N., Min, K.T., Kulli, J.C. & Yang, J. Identification of an amino acid defining the distinct properties of murine β1 and β3 subunit-containing GABAA receptors. J. Neurochem. 74, 827–838 (2000).

    Article  CAS  Google Scholar 

  32. Carlson, B.X., Engblom, A.C., Kristiansen, U., Schousboe, A. & Olsen, R.W. A single glycine residue at the entrance to the first membrane-spanning domain of the γ-aminobutyric acid type A receptor β(2) subunit affects allosteric sensitivity to GABA and anesthetics. Mol. Pharmacol. 57, 474–484 (2000).

    Article  CAS  Google Scholar 

  33. Li, G.D. et al. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J. Neurosci. 26, 11599–11605 (2006).

    Article  CAS  Google Scholar 

  34. Hall, M.A. et al. m-Azipropofol (AziPm) a photoactive analogue of the intravenous general anesthetic propofol. J. Med. Chem. 53, 5667–5675 (2010).

    Article  CAS  Google Scholar 

  35. Stewart, D.S. et al. p-(4-Azipentyl)propofol: a potent photoreactive general anesthetic derivative of propofol. J. Med. Chem. 54, 8124–8135 (2011).

    Article  CAS  Google Scholar 

  36. Evers, A.S. et al. A synthetic 18-norsteroid distinguishes between two neuroactive steroid binding sites on GABAA receptors. J. Pharmacol. Exp. Ther. 333, 404–413 (2010).

    Article  CAS  Google Scholar 

  37. Darbandi-Tonkabon, R. et al. Photoaffinity labeling with a neuroactive steroid analogue. 6-azi-pregnanolone labels voltage-dependent anion channel-1 in rat brain. J. Biol. Chem. 278, 13196–13206 (2003).

    Article  CAS  Google Scholar 

  38. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  Google Scholar 

Download references


We thank the Medical Research Council (UK) (grant G0901892 to N.P.F.), the US National Institutes of Health (NIH) - National Institute of General Medical Sciences (grant PO1-GM47969 to A.S.E. and grant 8 P41 GM103422-35 to R.R.T.), the Austrian Ministry of Science and Research and the European Seventh Framework Program (grant HEALTH-F4-2008-202088 to W.S.) for support. We also thank R. Yustos for technical assistance and D. Droste, M. Bennett, T. Gent, K. Karu, B. Manion, R. Ruby and J. Malone for help with the experiments.

Author information

Authors and Affiliations



C.J.E. and E.H.S. synthesized the propofol photolabels and helped with the data analysis. G.M.S.Y. and Z.-W.C. carried out the labeling experiments, protein chemistry and MS and helped with the analysis. R.D. made and analyzed the electrophysiological measurements. C.J.E. carried out the animal experiments. E.H. contributed to the molecular modeling. W.S. and K.F. supplied membranes containing expressed receptors. R.R.T. contributed to the design and interpretation of MS experiments. A.S.E. and N.P.F. designed and supervised the project, helped with the analysis and wrote the paper.

Corresponding authors

Correspondence to Alex S Evers or Nicholas P Franks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–6, Supplementary Tables 1 and 2 and Supplementary Note. (PDF 27782 kb)

Supplementary Data Set 1

MS2 spectra of GABAA α1 and β3 subunits (PDF 6552 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yip, G., Chen, ZW., Edge, C. et al. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol 9, 715–720 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing