Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis

Abstract

Asparagine-linked glycosylation is a complex protein modification conserved among all three domains of life. Herein we report the in vitro analysis of N-linked glycosylation from the methanogenic archaeon Methanococcus voltae. Using a suite of synthetic and semisynthetic substrates, we show that AglK initiates N-linked glycosylation in M. voltae through the formation of α-linked dolichyl monophosphate N-acetylglucosamine, which contrasts with the polyprenyl diphosphate intermediates that feature in both eukaryotes and bacteria. Notably, AglK has high sequence homology to dolichyl phosphate β-glucosyltransferases, including Alg5 in eukaryotes, suggesting a common evolutionary origin. The combined action of the first two enzymes, AglK and AglC, afforded an α-linked dolichyl monophosphate glycan that serves as a competent substrate for the archaeal oligosaccharyl transferase AglB. These studies provide what is to our knowledge the first biochemical evidence revealing that, despite the apparent similarity of the overall pathways, there are actually two general strategies to achieve N-linked glycoproteins across the domains of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N-linked glycosylation across the three domains of life.
Figure 2: N-linked glycosylation in M. voltae.
Figure 3: AglK is a Dol-P-GlcNAc synthase.
Figure 4: AglC is a UDP-Glc-2,3-diNAcA glycosyltransferase.
Figure 5: The OTase AglB uses Dol-P disaccharide to generate an N-linked glycopeptide.

Similar content being viewed by others

References

  1. Nothaft, H. & Szymanski, C.M. Protein glycosylation in bacteria: sweeter than ever. Nat. Rev. Microbiol. 8, 765–778 (2010).

    CAS  PubMed  Google Scholar 

  2. Eichler, J. Extreme sweetness: protein glycosylation in archaea. Nat. Rev. Microbiol. 11, 151–156 (2013).

    CAS  PubMed  Google Scholar 

  3. Larkin, A. & Imperiali, B. The expanding horizons of asparagine-linked glycosylation. Biochemistry 50, 4411–4426 (2011).

    CAS  PubMed  Google Scholar 

  4. Szymanski, C.M., Yao, R., Ewing, C.P., Trust, T.J. & Guerry, P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030 (1999).

    CAS  PubMed  Google Scholar 

  5. Magidovich, H. & Eichler, J. Glycosyltransferases and oligosaccharyltransferases in archaea: putative components of the N-glycosylation pathway in the third domain of life. FEMS Microbiol. Lett. 300, 122–130 (2009).

    CAS  PubMed  Google Scholar 

  6. Chaban, B., Voisin, S., Kelly, J., Logan, S.M. & Jarrell, K.F. Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in archaea. Mol. Microbiol. 61, 259–268 (2006).

    CAS  PubMed  Google Scholar 

  7. Abu-Qarn, M. & Eichler, J. Protein N-glycosylation in archaea: defining Haloferax volcanii genes involved in S-layer glycoprotein glycosylation. Mol. Microbiol. 61, 511–525 (2006).

    CAS  PubMed  Google Scholar 

  8. Mescher, M.F. & Strominger, J.L. Purification and characterization of a prokaryotic glucoprotein from the cell envelope of Halobacterium salinarium. J. Biol. Chem. 251, 2005–2014 (1976).

    CAS  PubMed  Google Scholar 

  9. Mescher, M.F., Hansen, U. & Strominger, J.L. Formation of lipid-linked sugar compounds in Halobacterium salinarium. Presumed intermediates in glycoprotein synthesis. J. Biol. Chem. 251, 7289–7294 (1976).

    CAS  PubMed  Google Scholar 

  10. Lechner, J., Wieland, F. & Sumper, M. Biosynthesis of sulfated saccharides N-glycosidically linked to the protein via glucose. Purification and identification of sulfated dolichyl monophosphoryl tetrasaccharides from halobacteria. J. Biol. Chem. 260, 860–866 (1985).

    CAS  PubMed  Google Scholar 

  11. Burda, P. & Aebi, M. The dolichol pathway of N-linked glycosylation. Biochim. Biophys. Acta 1426, 239–257 (1999).

    CAS  PubMed  Google Scholar 

  12. Calo, D., Guan, Z., Naparstek, S. & Eichler, J. Different routes to the same ending: comparing the N-glycosylaton processes of Haloferax volcanii and Haloarcula morismortui, two halophilic archaea from the Dead Sea. Mol. Microbiol. 81, 1166–1177 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuntz, C., Sonnenbichler, J., Sonnenbichler, I., Sumper, M. & Zeitler, R. Isolation and characterization of dolichol-linked oligosaccharides from Haloferax volcanii. Glycobiology 7, 897–904 (1997).

    CAS  PubMed  Google Scholar 

  14. Guan, Z. et al. Distinct glycan-charged phosphodolichol carriers are required for the assembly of the pentasaccharide N-linked to the Haloferax volcanii S-layer glycoprotein. Mol. Microbiol. 78, 1294–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Guan, Z., Meyer, B., Albers, S.-V. & Eichler, J. The thermoacidophilic archaeaon Sulfolobus acidocaldarius contains an unusually short, highly reduced dolichol phosphate. Biochim. Biophys. Acta 1811, 607–616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yurist-Doutsch, S., Chaban, B., VanDyke, D.J., Jarrell, K.F. & Eichler, J. Sweet to the extreme: protein glycosylation in archaea. Mol. Microbiol. 68, 1079–1084 (2008).

    CAS  PubMed  Google Scholar 

  17. VanDyke, D.J. et al. Identification of genes involves in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis. Mol. Microbiol. 72, 633–644 (2009).

    CAS  PubMed  Google Scholar 

  18. Voisin, S. et al. Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J. Biol. Chem. 280, 16586–16593 (2005).

    CAS  PubMed  Google Scholar 

  19. Chaban, B., Logan, S.M., Kelly, J.F. & Jarrell, K.F. AglC and AglK are involved in biosynthesis and attachment of diacetylated glucuronic acid to the N-glycan in Methanococcus voltae. J. Bacteriol. 191, 187–195 (2009).

    CAS  PubMed  Google Scholar 

  20. Shams-Eldin, H., Chaban, B., Niehus, S., Schwarz, R.T. & Jarrell, K.F. Identification of the archaeal alg7 gene homolog (encoding N-acetylglucosamine-1-phosphate transferase) of the N-linked glycosylation system by cross-domain complementation in Saccharomyces cerevisiae. J. Bacteriol. 190, 2217–2220 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones, M.B., Rosenburg, J.N., Betenbaugh, M.J. & Krag, S.S. Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life. Biochim. Biophys. Acta 1790, 485–494 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Naparstek, S., Guan, Z. & Eichler, J. A predicted geranylgeranyl reductase reduces the ω-position isoprene of dolichol phosphate in the halophilic archaeon, Haloferax volcanii. Biochim. Biophys. Acta 1821, 923–933 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Heesen, S., Lehle, L., Weissmann, A. & Aebi, M. Isolation of the ALG5 locus encoding the UDP-glucose:dolichyl-phosphate glucosyltransferase from Saccharomyces cerevisiae. Eur. J. Biochem. 224, 71–79 (1994).

    CAS  PubMed  Google Scholar 

  24. Kaminski, L. et al. AglJ adds the first sugar of the N-linked pentasaccharide decorating the Haloferax volcanii S-layer glycoprotein. J. Bacteriol. 192, 5572–5579 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS  PubMed  Google Scholar 

  26. Hartley, M.D. & Imperiali, B. At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch. Biochem. Biophys. 517, 83–97 (2012).

    CAS  PubMed  Google Scholar 

  27. Kelly, J., Logan, S.M., Jarrell, K.F., VanDyke, D.J. & Vinogradov, E.V. A novel N-linked flagellar glycan from Methanococcus maripaludis. Carbohydr. Res. 344, 648–653 (2009).

    CAS  PubMed  Google Scholar 

  28. Behrens, N.H. & Leloir, L.F. Dolichyl monophosphate glucose: an intermediate in glucose transfer in liver. Proc. Natl. Acad. Sci. USA 66, 153–159 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tkacz, J.S., Herscovics, A., Warren, C.D. & Jeanloz, R.W. Mannosyltransferase activity in calf pancreas microsomes. Formation from guanosine diphosphate-D-[14C]mannose of a 14C-labeled mannolipid with properties of dolichyl mannopyranosyl phosphate. J. Biol. Chem. 249, 6372–6381 (1974).

    CAS  PubMed  Google Scholar 

  30. Herscovics, A., Warren, C.D. & Jeanloz, R.W. Anomeric configuration of the dolichyl-D-mannosyl phosphate formed in calf pancreas microsomes. J. Biol. Chem. 250, 8079–8084 (1975).

    CAS  PubMed  Google Scholar 

  31. O'Connor, J.V., Nunez, H.A. & Barker, R. α- and β-glycopyranosyl phosphates and 1,2-phosphates. Assignments of conformations in solution by 13C and 1H NMR. Biochemistry 18, 500–507 (1979).

    CAS  PubMed  Google Scholar 

  32. Larkin, A. & Imperiali, B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry 48, 5446–5455 (2009).

    CAS  PubMed  Google Scholar 

  33. Sharma, C.B., Lehle, L. & Tanner, W. N-Glycosylation of yeast proteins. Characterization of the solubilized oligosaccharyl transferase. Eur. J. Biochem. 116, 101–108 (1981).

    CAS  PubMed  Google Scholar 

  34. Imperiali, B. & Hendrickson, T.L. Asparagine-linked glycosylation: specificity and function of oligosaccharyl transferase. Bioorg. Med. Chem. 3, 1565–1578 (1995).

    CAS  PubMed  Google Scholar 

  35. Glover, K.J., Weerapana, E., Numao, S. & Imperiali, B. Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni. Chem. Biol. 12, 1311–1315 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jaffee, M.B. & Imperiali, B. Exploiting topological constraints to reveal buried sequence motifs in the membrane-bound N-linked oligosaccharyl transferases. Biochemistry 50, 7557–7567 (2011).

    CAS  PubMed  Google Scholar 

  37. Lizak, C., Gerber, S., Numao, S., Aebi, M. & Locher, K.P. X-ray structure of a bacterial oligosaccharyltransferase. Nature 474, 350–355 (2011).

    CAS  PubMed  Google Scholar 

  38. Ferrante, G., Ekiel, I. & Sprott, G.D. Structural characterization of the lipids of Methanococcus voltae, including a novel N-acetylglucosamine 1-phosphate diether. J. Biol. Chem. 261, 17062–17066 (1986).

    CAS  PubMed  Google Scholar 

  39. Charnock, S.J. & Davies, G.J. Structural analysis of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38, 6380–6385 (1999).

    CAS  PubMed  Google Scholar 

  40. Coutinho, P.M., Deleury, E., Davies, G.J. & Henrissat, B. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307–317 (2003).

    CAS  PubMed  Google Scholar 

  41. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    CAS  PubMed  Google Scholar 

  42. Flint, J. et al. Structural dissection and high-throughput screening of mannosylglycerate synthase. Nat. Struct. Mol. Biol. 12, 608–614 (2005).

    CAS  PubMed  Google Scholar 

  43. Ramirez, F. & Marecek, J.F. Coordination of magnesium with adenosine 5′-diphosphate and triphosphate. Biochim. Biophys. Acta 589, 21–29 (1980).

    CAS  PubMed  Google Scholar 

  44. Igura, M. et al. Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J. 27, 234–243 (2008).

    CAS  PubMed  Google Scholar 

  45. Matsumoto, S. et al. Crystal structure of the C-terminal globular domain of oligosaccharyltransferase from Archaeoglobus fulgidus at 1.75 Å resolution. Biochemistry 51, 4157–4166 (2012).

    CAS  PubMed  Google Scholar 

  46. Świeżewska, E. et al. The search for plant polyprenols. Acta Biochim. Pol. 41, 221–260 (1994).

    PubMed  Google Scholar 

  47. Wu, R., Beauchamps, M.G., Laquidara, J.M. & Sowa, J.R. Jr. Ruthenium-catalyzed asymmetric transfer hydrogenation of allylic alcohols by an enantioselective isomerization/transfer hydrogenation mechanism. Angew. Chem. Int. Ed. Engl. 51, 2106–2110 (2012).

    CAS  PubMed  Google Scholar 

  48. Suzuki, S. et al. Synthesis of mammalian dolichols from plant polyprenols. Tetrahedr. Lett. 24, 5103–5106 (1983).

    CAS  Google Scholar 

  49. Branch, C.L., Burton, G. & Moss, S.F. An expedient synthesis of allylic polyprenol phosphates. Synth. Commun. 29, 2639–2644 (1999).

    CAS  Google Scholar 

  50. Imperiali, B. & Zimmerman, J.W. Synthesis of dolichylpyrophosphate-linked oligosaccharides. Tetrahedr. Lett. 31, 6485–6488 (1990).

    CAS  Google Scholar 

  51. Tai, V.W.F. & Imperiali, B. Substrate specificity of the glycosyl donor for oligosaccharyl transferase. J. Org. Chem. 66, 6217–6228 (2001).

    CAS  PubMed  Google Scholar 

  52. Sim, M.M., Kondo, H. & Wong, C.-H. Synthesis and use of glycosyl phosphites: an effective route to glycosyl phosphates, sugar nucleotides, and glycosides. J. Am. Chem. Soc. 115, 2260–2267 (1993).

    CAS  Google Scholar 

  53. Folch, J., Lees, M. & Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  54. Troutman, J.M. & Imperiali, B. Campylobacter jejuni PglH is a single active site processive polymerase that utilizes product inhibition to limit sequential glycosyl transfer reactions. Biochemistry 48, 2807–2816 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the US National Institutes of Health (GM039334 to B.I.) The authors are grateful to M. Jaffee for help with initial expression studies, J. Simpson (Department of Chemistry Instrumentation Facility, Massachusetts Institute of Technology) for assistance with NMR acquisition, W. Whitman (University of Georgia) for the gift of both M. voltae genomic DNA and M. maripaludis cell pellets and E. Swiezewska (Polish Academy of Sciences) for providing a sample of racemic short dolichols for preliminary studies.

Author information

Authors and Affiliations

Authors

Contributions

B.I., A.L., M.M.C. and G.E.W. designed the experiments. A.L., M.M.C. and G.E.W. performed the experiments. The manuscript was written through the contributions of all of the authors.

Corresponding author

Correspondence to Barbara Imperiali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 8126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkin, A., Chang, M., Whitworth, G. et al. Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis. Nat Chem Biol 9, 367–373 (2013). https://doi.org/10.1038/nchembio.1249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1249

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology