Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active site profiling reveals coupling between domains in SRC-family kinases

Abstract

Protein kinases, key regulators of intracellular signal transduction, have emerged as an important class of drug targets. Chemical proteomic tools that facilitate the functional interrogation of protein kinase active sites are powerful reagents for studying the regulation of this large enzyme family and performing inhibitor selectivity screens. Here we describe a new crosslinking strategy that enables rapid and quantitative profiling of protein kinase active sites in lysates and live cells. Applying this methodology to the SRC-family kinases (SFKs) SRC and HCK led to the identification of a series of conformation-specific, ATP-competitive inhibitors that have a distinct preference for the autoinhibited forms of these kinases. Furthermore, we show that ligands that have this selectivity are able to modulate the ability of the regulatory domains of SRC and HCK to engage in intermolecular binding interactions. These studies provide insight into the regulation of this important family of tyrosine kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An active site–directed probe for ratiometric profiling of protein kinases.
Figure 2: Characterization of 1 in cell lysate and live cells.
Figure 3: Photocrosslinking to SFKs that have diverse regulatory domain interactions.
Figure 4: Photocrosslinking competition assays.
Figure 5: The catalytic domain of SRC is in the SRC/CDK-like inactive conformation when bound to 9.
Figure 6: ATP-competitive SFK inhibitors modulate the SH3 domain accessibilities of SRC and HCK.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  Google Scholar 

  2. Cohen, P. Protein kinases—the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315 (2002).

    Article  CAS  Google Scholar 

  3. Zhang, J., Yang, P.L. & Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9, 28–39 (2009).

    Article  Google Scholar 

  4. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    CAS  Google Scholar 

  5. Barglow, K.T. & Cravatt, B.F. Activity-based protein profiling for the functional annotation of enzymes. Nat. Methods 4, 822–827 (2007).

    Article  CAS  Google Scholar 

  6. Simon, G.M. & Cravatt, B.F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 11051–11055 (2010).

    Article  CAS  Google Scholar 

  7. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007).

    Article  CAS  Google Scholar 

  8. Patricelli, M.P. et al. In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol. 18, 699–710 (2011).

    Article  CAS  Google Scholar 

  9. Sharma, K. et al. Proteomics strategy for quantitative protein interaction profiling in cell extracts. Nat. Methods 6, 741–744 (2009).

    Article  CAS  Google Scholar 

  10. Cheng, H.C. et al. Allosteric networks governing regulation and catalysis of Src-family protein tyrosine kinases: implications for disease-associated kinases. Clin. Exp. Pharmacol. Physiol. 37, 93–101 (2010).

    Article  CAS  Google Scholar 

  11. Kim, L.C., Song, L. & Haura, E.B. Src kinases as therapeutic targets for cancer. Nat. Rev. Clin. Oncol. 6, 587–595 (2009).

    Article  Google Scholar 

  12. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  Google Scholar 

  13. Boggon, T.J. & Eck, M.J. Structure and regulation of Src family kinases. Oncogene 23, 7918–7927 (2004).

    Article  CAS  Google Scholar 

  14. Karaman, M.W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    Article  CAS  Google Scholar 

  15. Hantschel, O., Rix, U. & Superti-Furga, G. Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leuk. Lymphoma 49, 615–619 (2008).

    Article  CAS  Google Scholar 

  16. Li, J. et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat. Chem. Biol. 6, 291–299 (2010).

    Article  CAS  Google Scholar 

  17. Shi, H., Zhang, C.J., Chen, G.Y. & Yao, S.Q. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J. Am. Chem. Soc. 134, 3001–3014 (2012).

    Article  CAS  Google Scholar 

  18. Getlik, M. et al. Hybrid compound design to overcome the gatekeeper T338M mutation in cSrc. J. Med. Chem. 52, 3915–3926 (2009).

    Article  CAS  Google Scholar 

  19. Best, M.D. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 48, 6571–6584 (2009).

    Article  CAS  Google Scholar 

  20. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  Google Scholar 

  21. Jura, N. et al. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol. Cell 42, 9–22 (2011).

    Article  CAS  Google Scholar 

  22. Engen, J.R. et al. Structure and dynamic regulation of Src-family kinases. Cell. Mol. Life Sci. 65, 3058–3073 (2008).

    Article  CAS  Google Scholar 

  23. Briggs, S.D. & Smithgall, T.E. SH2-kinase linker mutations release Hck tyrosine kinase and transforming activities in Rat-2 fibroblasts. J. Biol. Chem. 274, 26579–26583 (1999).

    Article  CAS  Google Scholar 

  24. Gonfloni, S., Frischknecht, F., Way, M. & Superti-Furga, G. Leucine 255 of Src couples intramolecular interactions to inhibition of catalysis. Nat. Struct. Biol. 6, 760–764 (1999).

    Article  CAS  Google Scholar 

  25. Osusky, M., Taylor, S.J. & Shalloway, D. Autophosphorylation of purified c-Src at its primary negative regulation site. J. Biol. Chem. 270, 25729–25732 (1995).

    Article  CAS  Google Scholar 

  26. Lerner, E.C. et al. Activation of the Src family kinase Hck without SH3-linker release. J. Biol. Chem. 280, 40832–40837 (2005).

    Article  CAS  Google Scholar 

  27. Alvarado, J.J., Betts, L., Moroco, J.A., Smithgall, T.E. & Yeh, J.I. Crystal structure of the Src family kinase Hck SH3–SH2 linker regulatory region supports an SH3-dominant activation mechanism. J. Biol. Chem. 285, 35455–35461 (2010).

    Article  CAS  Google Scholar 

  28. Ayrapetov, M.K. et al. Conformational basis for SH2-Tyr(P)527 binding in Src inactivation. J. Biol. Chem. 281, 23776–23784 (2006).

    Article  CAS  Google Scholar 

  29. Lerner, E.C. & Smithgall, T.E. SH3-dependent stimulation of Src-family kinase autophosphorylation without tail release from the SH2 domain in vivo. Nat. Struct. Biol. 9, 365–369 (2002).

    CAS  PubMed  Google Scholar 

  30. Moarefi, I. et al. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385, 650–653 (1997).

    Article  CAS  Google Scholar 

  31. Wodicka, L.M. et al. Activation state–dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. Chem. Biol. 17, 1241–1249 (2010).

    Article  CAS  Google Scholar 

  32. Georghiou, G., Kleiner, R.E., Pulkoski-Gross, M., Liu, D.R. & Seeliger, M.A. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Nat. Chem. Biol. 8, 366–374 (2012).

    Article  CAS  Google Scholar 

  33. Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).

    Article  CAS  Google Scholar 

  34. Xu, W., Harrison, S.C. & Eck, M.J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    Article  CAS  Google Scholar 

  35. Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  Google Scholar 

  36. Seeliger, M.A. et al. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Cancer Res. 69, 2384–2392 (2009).

    Article  CAS  Google Scholar 

  37. Dar, A.C., Lopez, M.S. & Shokat, K.M. Small molecule recognition of c-Src via the Imatinib-binding conformation. Chem. Biol. 15, 1015–1022 (2008).

    Article  CAS  Google Scholar 

  38. Simard, J.R. et al. A new screening assay for allosteric inhibitors of cSrc. Nat. Chem. Biol. 5, 394–396 (2009).

    Article  CAS  Google Scholar 

  39. Wood, E.R. et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 64, 6652–6659 (2004).

    Article  CAS  Google Scholar 

  40. Marcotte, D.J. et al. Structures of human Bruton′s tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Protein Sci. 19, 429–439 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Okuzumi, T. et al. Inhibitor hijacking of Akt activation. Nat. Chem. Biol. 5, 484–493 (2009).

    Article  CAS  Google Scholar 

  42. Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  Google Scholar 

  43. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  Google Scholar 

  44. Rauch, J., Volinsky, N., Romano, D. & Kolch, W. The secret life of kinases: functions beyond catalysis. Cell Commun. Signal. 9, 23 (2011).

    Article  CAS  Google Scholar 

  45. Kaplan, K.B., Swedlow, J.R., Morgan, D.O. & Varmus, H.E. c-Src enhances the spreading of src−/− fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev. 9, 1505–1517 (1995).

    Article  CAS  Google Scholar 

  46. García-Martínez, J.M. et al. A non-catalytic function of the Src family tyrosine kinases controls prolactin-induced Jak2 signaling. Cell. Signal. 22, 415–426 (2010).

    Article  Google Scholar 

  47. Katsuta, H., Tsuji, S., Niho, Y., Kurosaki, T. & Kitamura, D. Lyn-mediated down-regulation of B cell antigen receptor signaling: inhibition of protein kinase C activation by Lyn in a kinase-independent fashion. J. Immunol. 160, 1547–1551 (1998).

    CAS  PubMed  Google Scholar 

  48. Xu, H. & Littman, D.R. A kinase-independent function of Lck in potentiating antigen-specific T cell activation. Cell 74, 633–643 (1993).

    Article  CAS  Google Scholar 

  49. Boudeau, J., Miranda-Saavedra, D., Barton, G.J. & Alessi, D.R. Emerging roles of pseudokinases. Trends Cell Biol. 16, 443–452 (2006).

    Article  CAS  Google Scholar 

  50. Seeliger, M.A. et al. High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Sci. 14, 3135–3139 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Several ATP-competitive inhibitors were provided by R. Murphy (University of Washington, Seattle) and G. Perera (University of Washington, Seattle). This research was supported by US National Institutes of Health grants R01GM086858 (D.J.M.) and R01AI089441 (E.A.M.) and the Alfred P. Sloan Foundation (D.J.M.).

Author information

Authors and Affiliations

Authors

Contributions

R.K. and D.J.M. conceived the idea and designed the study. R.K. conducted crosslinking experiments. R.K. and S.E.L. performed biochemical studies with SFK variants. R.K. and E.J.D. synthesized compounds. J.L.B. designed, expressed and purified HaloTag fusion constructs. P.R. constructed, expressed and purified SFK variants. E.T.L. and E.A.M. carried out crystallographic studies. R.K. and D.J.M. wrote the paper.

Corresponding author

Correspondence to Dustin J Maly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Methods (PDF 7446 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamurty, R., Brigham, J., Leonard, S. et al. Active site profiling reveals coupling between domains in SRC-family kinases. Nat Chem Biol 9, 43–50 (2013). https://doi.org/10.1038/nchembio.1118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing