Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation

Abstract

Membrane rafts are thought to be sphingolipid- and cholesterol-dependent lateral assemblies involved in diverse cellular functions. Their biological roles and even their existence, however, remain controversial. Using an original fluorescence correlation spectroscopy strategy that recently enabled us to identify nanoscale membrane organizations in live cells, we report here that highly dynamic nanodomains exist in both the outer and inner leaflets of the plasma membrane. Through specific inhibition of biosynthesis, we show that sphingolipids and cholesterol are essential and act in concert for formation of nanodomains, thus corroborating their raft nature. Moreover, we find that nanodomains play a crucial role in triggering the phosphatidylinositol-3 kinase/Akt signaling pathway, by facilitating Akt recruitment and activation upon phosphatidylinositol-3,4,5-triphosphate accumulation in the plasma membrane. Thus, through direct monitoring and controlled alterations of rafts in living cells, we demonstrate that rafts are critically involved in the activation of a signaling axis that is essential for cell physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monitoring of dynamic nanodomains on both leaflets of the plasma membrane of living DWT6.11 T cells.
Figure 2: Analysis of Akt activation and membrane association in DWT6.11 and Jurkat JA16 cells.
Figure 3: Membrane binding dynamics and nanodomain partitioning of GFP-Akt, GFP-Akt-PH and GFP-GRP1-PH in JA16 cells.
Figure 4: Restoration of raft nanodomain formation and Akt activation in myriocin- and zaragozic acid–treated JA16 cells upon addition of C12-SM.
Figure 5: Akt activation trigger by IGF1 in COS-7 cells.

Similar content being viewed by others

References

  1. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  Google Scholar 

  2. Brown, D.A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998).

    Article  CAS  Google Scholar 

  3. Edidin, M. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

    Article  CAS  Google Scholar 

  4. Hancock, J.F. Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell Biol. 7, 456–462 (2006).

    Article  CAS  Google Scholar 

  5. Marguet, D., Lenne, P.F., Rigneault, H. & He, H.T. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J. 25, 3446–3457 (2006).

    Article  CAS  Google Scholar 

  6. Jacobson, K., Mouritsen, O.G. & Anderson, R.G. Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9, 7–14 (2007).

    Article  CAS  Google Scholar 

  7. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  8. Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).

    Article  CAS  Google Scholar 

  9. Pralle, A., Keller, P., Florin, E.L., Simons, K. & Horber, J.K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008 (2000).

    Article  CAS  Google Scholar 

  10. Niv, H., Gutman, O., Kloog, Y. & Henis, Y.I. Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J. Cell Biol. 157, 865–872 (2002).

    Article  CAS  Google Scholar 

  11. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  Google Scholar 

  12. Prior, I.A., Muncke, C., Parton, R.G. & Hancock, J.F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

    Article  CAS  Google Scholar 

  13. Gaus, K. et al. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc. Natl. Acad. Sci. USA 100, 15554–15559 (2003).

    Article  CAS  Google Scholar 

  14. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    Article  CAS  Google Scholar 

  15. Ianoul, A. et al. Imaging nanometer domains of beta-adrenergic receptor complexes on the surface of cardiac myocytes. Nat. Chem. Biol. 1, 196–202 (2005).

    Article  CAS  Google Scholar 

  16. Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P.F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005).

    Article  CAS  Google Scholar 

  17. Lenne, P.F. et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256 (2006).

    Article  CAS  Google Scholar 

  18. Hanada, M., Feng, J. & Hemmings, B.A. Structure, regulation and function of PKB/AKT-a major therapeutic target. Biochim. Biophys. Acta 1697, 3–16 (2004).

    Article  CAS  Google Scholar 

  19. Scheid, M.P. & Woodgett, J.R. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 546, 108–112 (2003).

    Article  CAS  Google Scholar 

  20. Sarbassov, D.D., Guertin, D.A., Ali, S.M. & Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  Google Scholar 

  21. Zhuang, L., Lin, J., Lu, M.L., Solomon, K.R. & Freeman, M.R. Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res. 62, 2227–2231 (2002).

    CAS  PubMed  Google Scholar 

  22. Adam, R.M. et al. Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res. 67, 6238–6246 (2007).

    Article  CAS  Google Scholar 

  23. Lee, K.Y., D'Acquisto, F., Hayden, M.S., Shim, J.H. & Ghosh, S. PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation. Science 308, 114–118 (2005).

    Article  CAS  Google Scholar 

  24. Hill, M.M., Feng, J. & Hemmings, B.A. Identification of a plasma membrane Raft-associated PKB Ser473 kinase activity that is distinct from ILK and PDK1. Curr. Biol. 12, 1251–1255 (2002).

    Article  CAS  Google Scholar 

  25. Lucero, H., Gae, D. & Taccioli, G.E. Novel localization of the DNA-PK complex in lipid rafts: a putative role in the signal transduction pathway of the ionizing radiation response. J. Biol. Chem. 278, 22136–22143 (2003).

    Article  CAS  Google Scholar 

  26. Pages, F. et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369, 327–329 (1994).

    Article  CAS  Google Scholar 

  27. Wenger, J. et al. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys. J. 92, 913–919 (2007).

    Article  CAS  Google Scholar 

  28. Miyake, Y., Kozutsumi, Y., Nakamura, S., Fujita, T. & Kawasaki, T. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem. Biophys. Res. Commun. 211, 396–403 (1995).

    Article  CAS  Google Scholar 

  29. Bergstrom, J.D. et al. Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc. Natl. Acad. Sci. USA 90, 80–84 (1993).

    Article  CAS  Google Scholar 

  30. Freeburn, R.W. et al. Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J. Immunol. 169, 5441–5450 (2002).

    Article  CAS  Google Scholar 

  31. Berg, L.J., Finkelstein, L.D., Lucas, J.A. & Schwartzberg, P.L. Tec family kinases in T lymphocyte development and function. Annu. Rev. Immunol. 23, 549–600 (2005).

    Article  CAS  Google Scholar 

  32. Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  Google Scholar 

  33. Oancea, E., Teruel, M.N., Quest, A.F. & Meyer, T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498 (1998).

    Article  CAS  Google Scholar 

  34. Varnai, P. et al. Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J. Cell Sci. 118, 4879–4888 (2005).

    Article  CAS  Google Scholar 

  35. Kiessling, V., Crane, J.M. & Tamm, L.K. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys. J. 91, 3313–3326 (2006).

    Article  CAS  Google Scholar 

  36. Kwik, J. et al. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl. Acad. Sci. USA 100, 13964–13969 (2003).

    Article  CAS  Google Scholar 

  37. Kabouridis, P.S., Janzen, J., Magee, A.L. & Ley, S.C. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur. J. Immunol. 30, 954–963 (2000).

    Article  CAS  Google Scholar 

  38. Magee, A.I., Adler, J. & Parmryd, I. Cold-induced coalescence of T-cell plasma membrane microdomains activates signalling pathways. J. Cell Sci. 118, 3141–3151 (2005).

    Article  CAS  Google Scholar 

  39. Tong, J. et al. Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to Raft bilayers. Biophys. J. 94, 125–133 (2008).

    Article  CAS  Google Scholar 

  40. Gokhale, N.A., Abraham, A., Digman, M.A., Gratton, E. & Cho, W. Phosphoinositide specificity of and mechanism of lipid domain formation by annexin A2-p11 heterotetramer. J. Biol. Chem. 280, 42831–42840 (2005).

    Article  CAS  Google Scholar 

  41. Epand, R.M., Vuong, P., Yip, C.M., Maekawa, S. & Epand, R.F. Cholesterol-dependent partitioning of PtdIns(4,5)P2 into membrane domains by the N-terminal fragment of NAP-22 (neuronal axonal myristoylated membrane protein of 22 kDa). Biochem. J. 379, 527–532 (2004).

    Article  CAS  Google Scholar 

  42. Golebiewska, U. et al. Membrane-bound basic peptides sequester multivalent (PIP2), but not monovalent (PS), acidic lipids. Biophys. J. 91, 588–599 (2006).

    Article  CAS  Google Scholar 

  43. Datta, K. et al. AH/PH domain-mediated interaction between Akt molecules and its potential role in Akt regulation. Mol. Cell. Biol. 15, 2304–2310 (1995).

    Article  CAS  Google Scholar 

  44. Calleja, V. et al. Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol. 5, e95 (2007).

    Article  Google Scholar 

  45. Feng, J., Park, J., Cron, P., Hess, D. & Hemmings, B.A. Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J. Biol. Chem. 279, 41189–41196 (2004).

    Article  CAS  Google Scholar 

  46. Jones, K.A., Jiang, X., Yamamoto, Y. & Yeung, R.S. Tuberin is a component of lipid rafts and mediates caveolin-1 localization: role of TSC2 in post-Golgi transport. Exp. Cell Res. 295, 512–524 (2004).

    Article  CAS  Google Scholar 

  47. Gaus, K. et al. Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131 (2005).

    Article  CAS  Google Scholar 

  48. Costello, P.S., Gallagher, M. & Cantrell, D.A. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nat. Immunol. 3, 1082–1089 (2002).

    Article  CAS  Google Scholar 

  49. Harriague, J. & Bismuth, G. Imaging antigen-induced PI3K activation in T cells. Nat. Immunol. 3, 1090–1096 (2002).

    Article  CAS  Google Scholar 

  50. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. & Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by institutional grants from Institut National de la Santé et de la Recherche Médicale and Centre National de la Recherche Scientifique, and by specific grants from Agence Nationale de la Recherche, Association pour la Recherche sur le Cancer, European regional development fund, Fondation pour la Recherche Médicale, Institut National du Cancer (PL06-026, PL96-009 and PF108-05), Ligue Nationale Française contre le Cancer, Ministère de l'Éducation Nationale, de la Recherche et de la Technologie and Centre National de la Recherche Scientifique. Part of the work was supported by IFR30 Lipidomics of the Functional Exploration Platform of Toulouse Genopole. R.L. and F.C. were awarded fellowships from the Ministère de l'Éducation Nationale, de la Recherche et de la Technologie. We thank M. Fallet (PICsL imaging core facility) and F. Garçon for technical assistance, P. Chavrier (Institut Curie), J. Downward (Cancer Research UK London Research Institute), H. Lelouard (Centre d'Immunologie de Marseille-Luminy), S. Méresse (Centre d'Immunologie de Marseille-Luminy) and T. Meyer (Stanford University Medical School) for reagents, Y. Xia for chemical structure drawing, K. Simons, G. van Meer and C. Zhu for discussion, P. Golstein, J.P. Gorvel, A.-O. Hueber, L. Leserman, A. Pamidi and T. Reisine for critical reading of the manuscript and E. Witty (AngloScribe) for editing the English.

Author information

Authors and Affiliations

Authors

Contributions

R.L., X.-J.G., F.C., Y.H., B.P., D.M. and H.-T.H. conceived and designed the experiments. R.L., X.-J.G., F.C., Y.H., O.H., A.-M.B. and S.M.S. performed the experiments. R.L., X.-J.G., F.C., Y.H., B.P., D.M. and H.-T.H. analyzed the data. P.-F.L., H.R., D.O., G.B., J.A.N. and B.P. contributed reagents, materials and analysis tools. D.M. and H.-T.H. wrote the paper with contributions from R.L., X.-J.G., F.C., Y.H. and B.P.

Corresponding authors

Correspondence to Bernard Payrastre or Hai-Tao He.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2, Supplementary Data, Supplementary Discussion and Supplementary Methods (PDF 2140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasserre, R., Guo, XJ., Conchonaud, F. et al. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 4, 538–547 (2008). https://doi.org/10.1038/nchembio.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing