High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes


Dye-sensitized solar cells based on iodide/triiodide (I/I3) electrolytes are viable low-cost alternatives to conventional silicon solar cells. However, as well as providing record efficiencies of up to 12.0%, the use of I/I3 in such solar cells also brings about certain limitations that stem from its corrosive nature and complex two-electron redox chemistry. Alternative redox mediators have been investigated, but these generally fall well short of matching the performance of conventional I/I3 electrolytes. Here, we report energy conversion efficiencies of 7.5% (simulated sunlight, AM1.5, 1,000 W m−2) for dye-sensitized solar cells combining the archetypal ferrocene/ferrocenium (Fc/Fc+) single-electron redox couple with a novel metal-free organic donor–acceptor sensitizer (Carbz-PAHTDTT). These Fc/Fc+-based devices exceed the efficiency achieved for devices prepared using I/I3 electrolytes under comparable conditions, revealing the great potential of ferrocene-based electrolytes in future dye-sensitized solar cells applications. This improvement results from a more favourable matching of the redox potential of the ferrocene couple with that of the new donor–acceptor sensitizer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Energy levels of DSC components, approximate redox potentials and band energies of the different components.
Figure 2
Figure 3: IPCE results and absorptivity of the Carbz-PAHTDTT sensitized TiO2 film.
Figure 4
Figure 5: Photocurrent density–voltage curves at simulated one sun (1,000 W m−2) irradiation (AM1.5).
Figure 6: IMVS and IMPS spectroscopy.


  1. 1

    O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    CAS  Article  Google Scholar 

  2. 2

    Chen, C.-Y. et al. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3, 3103–3109 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Zeng, W. et al. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem. Mater. 22, 1915–1925 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Yu, Q. et al. High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano 4, 6032–6038 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Boschloo, G. & Hagfeldt, A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42, 1819–1826 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Zhang, Z., Chen, P., Murakami, T. N., Zakeeruddin, S. M. & Grätzel, M. The 2,2,6,6-tetramethyl-1-piperidinyloxy radical: an efficient, iodine-free redox mediator for dye-sensitized solar cells. Adv. Funct. Mater. 18, 341–346 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Schlichthoerl, G., Huang, S. Y., Sprague, J. & Frank, A. J. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B 101, 8141–8155 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Gregg, B. A., Pichot, F., Ferrere, S. & Fields, C. L. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. Phys. Chem. B 105, 1422–1429 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Ardo, S. & Meyer, G. J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 38, 115–164 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Yanagida, S., Yu, Y. & Manseki, K. Iodine/iodide-free dye-sensitized solar cells. Acc. Chem. Res. 42, 1827–1838 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Nusbaumer, H., Moser, J.-E., Zakeeruddin, S. M., Nazeeruddin, M. K. & Grätzel, M. CoII(dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J. Phys. Chem. B 105, 10461–10464 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Feldt, S. M. et al. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc. 132, 16714–16724 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Hattori, S., Wada, Y., Yanagida, S. & Fukuzumi, S. Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 127, 9648–9654 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Li, T. C. et al. Ni(III)/(IV) Bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells. J. Am. Chem. Soc. 132, 4580–4582 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Teng, C. et al. Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up to 1 V based on Br/Br3 electrolytes. Org. Lett. 11, 5542–5545 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Snaith, H. J., Zakeeruddin, S. M., Wang, Q., Pechy, P. & Grätzel, M. Dye-sensitized solar cells incorporating a ‘liquid’ hole-transporting material. Nano Lett. 6, 2000–2003 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Wang, M. et al. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2, 385–389 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Tennakone, K. et al. A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex. J. Phys. D 31, 1492–1496 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Yum, J. H., Chen, P., Grätzel, M. & Nazeeruddin, M. Recent developments in solid-state dye-sensitized solar cells. ChemSusChem 1, 699–707 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Pavlishchuk, V. V. & Addison, A. W. Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 °C. Inorg. Chim. Acta 298, 97–102 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Brown, K. N. et al. Electrochemistry of chlorinated ferrocenes: stability of chlorinated ferrocenium ions. Dalton Trans. 835–840 (1993).

  23. 23

    Noviandri, I. et al. The decamethylferrocenium/decamethylferrocene redox couple: a superior redox standard to the ferrocenium/ferrocene redox couple for studying solvent effects on the thermodynamics of electron transfer. J. Phys. Chem. B 103, 6713–6722 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Hamann, T. W., Farha, O. K. & Hupp, J. T. Outer-sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition. J. Phys. Chem. C 112, 19756–19764 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Waita, S. M. et al. Electrochemical characterization of TiO2 blocking layers prepared by reactive DC magnetron sputtering. J. Electroanal. Chem. 637, 79–83 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Feldt, S. M., Cappel, U. B., Johansson, E. M. J., Boschloo, G. & Hagfeldt, A. Characterization of surface passivation by poly(methylsiloxane) for dye-sensitized solar cells employing the ferrocene redox couple. J. Phys. Chem. C 114, 10551–10558 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Zotti, G., Schiavon, G., Zecchin, S. & Favretto, D. Dioxygen-decomposition of ferrocenium molecules in acetonitrile: the nature of the electrode-fouling films during ferrocene electrochemistry. J. Electroanal. Chem. 456, 217–221 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Hurvois, J. P. & Moinet, C. Reactivity of ferrocenium cations with molecular oxygen in polar organic solvents: decomposition, redox reactions and stabilization. J. Organomet. Chem. 690, 1829–1839 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Schmidt-Mende, L. et al. Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv. Mater. 17, 813–815 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Huang, S. Y., Schlichthorl, G., Nozik, A. J., Grätzel, M. & Frank, A. J. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 101, 2576–2582 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Turbanov, K. Y. Interaction of ferricinium cation with pyridine. Zhurnal Obshchei Khimii 63, 1803–1809 (1993).

    CAS  Google Scholar 

  32. 32

    Mukherjee, L. M. Standard potential of the ferrocene–ferricinium electrode in pyridine. Evaluation of proton medium effect. J. Phys. Chem. B 76, 243–245 (1972).

    CAS  Article  Google Scholar 

  33. 33

    Wang, Z.-S. et al. Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: electron lifetime improved by coadsorption of deoxycholic acid. J. Phys. Chem. C 111, 7224–7230 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Nazeeruddin, M. K. et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835–16847 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Fisher, A. C., Peter, L. M., Ponomarev, E. A., Walker, A. B. & Wijayantha, K. G. U. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 104, 949–958 (2000).

    CAS  Article  Google Scholar 

  36. 36

    Duffy, N. W., Peter, L. M., Rajapakse, R. M. G. & Wijayantha, K. G. U. A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells. Electrochem. Commun. 2, 658–662 (2000).

    CAS  Article  Google Scholar 

  37. 37

    Bessho, T. et al. New paradigm in molecular engineering of sensitizers for solar cell applications. J. Am. Chem. Soc. 131, 5930–5934 (2009).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge financial support from the Australian Research Council through the Australian Centre of Excellence for Electromaterials Science (ACES), and the Discovery, Australian Research Fellowship and LIEF programs, the Commonwealth Scientific and Industrial Research Organisation (Australia), the Victorian State Government Department of Primary Industry (SERD Program, Victorian Organic Solar Cells Consortium) and Monash University (supporting U.B. with a Monash Research Fellowship). Particular thanks go to JGC Catalysts and Chemicals Ltd, Kitakyushu-Shi (Japan), for providing samples of TiO2 screen printing paste.

Author information




L.S., U.B. and A.B.H. proposed the research. T.D. designed the electrolyte, developed the construction technique, fabricated the DSCs and carried out device characterization. T.-H.K. designed, synthesized and characterized the dye. N.W.D. and T.D. carried out the charge extraction and IMVS–IMPS measurements on instruments designed by N.W.D. L.S., U.B. and T.D. were mainly responsible for writing the manuscript, with contributions from N.W.D., T.-H.K. and A.B.H.

Corresponding authors

Correspondence to Udo Bach or Leone Spiccia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1594 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Daeneke, T., Kwon, TH., Holmes, A. et al. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature Chem 3, 211–215 (2011). https://doi.org/10.1038/nchem.966

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing