Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Storable, thermally activated, near-infrared chemiluminescent dyes and dye-stained microparticles for optical imaging

Abstract

Imaging techniques are a vital part of clinical diagnostics, biomedical research and nanotechnology. Optical molecular imaging makes use of relatively harmless, low-energy light and technically straightforward instrumentation. Self-illuminating, chemiluminescent systems are particularly attractive because they have inherently high signal contrast due to the lack of background emission. Currently, chemiluminescence imaging involves short-lived molecular species that are not stored but are instead generated in situ, and they typically emit visible light, which does not penetrate far through heterogeneous biological media. Here, we describe a new paradigm for optical molecular imaging using squaraine rotaxane endoperoxides, interlocked fluorescent and chemiluminescent dye molecules that have a squaraine chromophore encapsulated inside a macrocycle endoperoxide. Squaraine rotaxane endoperoxides can be stored indefinitely at temperatures below −20 °C, but upon warming to body temperature they undergo a unimolecular chemical reaction and emit near-infrared light that can pass through a living mouse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal cycloreversion of 1EP to 1 and reverse photoreaction.
Figure 2: False-colour pixel intensity maps at 38 °C with intensity scales in arbitrary units.
Figure 3: Planar chemiluminescence and reflected fluorescence from 1EP-microparticles injected subcutaneously into the dorsal side of a nude mouse rear leg at 38 °C.
Figure 4: Chemiluminescence from 1EP at 38 °C penetrates through a living nude mouse.

Similar content being viewed by others

References

  1. Mettler, F. A. & Guiberteau, M. J. Essentials of Nuclear Medicine Imaging 5th edn (Saunders, 2005).

  2. Mancini, J. G. & Ferrandino, M. N. The impact of new methods of imaging on radiation dosage delivered to patients. Curr. Opin. Urol. 20, 163–168 (2010).

    Article  Google Scholar 

  3. Sharkey, R. M. & Goldenberg, D. M. Novel radioimmunopharmaceuticals for cancer imaging and therapy. Curr. Opin. Invest. Drugs 9, 1302–1316 (2008).

    CAS  Google Scholar 

  4. Roda, A., ed. Chemiluminescence and Bioluminescence: Past, Present and Future (Royal Society of Chemistry, 2010).

  5. Su, Y., Chen, H., Wang, Z. & Lv, Y. Recent advances in chemiluminescence. Appl. Spectrosc. Rev. 42, 139–176 (2007).

    Article  CAS  Google Scholar 

  6. Prescher, J. A. & Contag, C. H. Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr. Opin. Chem. Biol. 14, 80–89 (2010).

    Article  CAS  Google Scholar 

  7. Roda, A., Guardigli, M., Michelini, E. & Mirasoli, M. Bioluminescence in analytical chemistry and in vivo imaging. Trends Anal. Chem. 28, 307–322 (2009).

    Article  CAS  Google Scholar 

  8. Gassensmith, J. J., Baumes, J. M. & Smith, B. D. Discovery and early development of squaraine rotaxanes. Chem. Commun. 6329–6338 (2009).

  9. Adam, W., Kazakov, D. V. & Kazakov, V. P. Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev. 105, 3371–3387 (2005).

    Article  CAS  Google Scholar 

  10. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    Article  CAS  Google Scholar 

  11. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  12. Gassensmith, J. J. et al. Synthesis and photophysical investigation of squaraine rotaxanes by ‘clicked capping’. Org. Lett. 10, 3343–3346 (2008).

    Article  CAS  Google Scholar 

  13. Arunkumar, E., Sudeep, P. K., Kamat, P. V., Noll, B. C. & Smith, B. D. Singlet oxygen generation using iodinated squaraine and squaraine-rotaxane dyes. New J. Chem. 31, 677–683 (2007).

    Article  CAS  Google Scholar 

  14. Salice, P. et al. Photophysics of squaraine dyes: role of charge-transfer in singlet oxygen production and removal. J. Phys. Chem. A 114, 2518–2525 (2010).

    Article  CAS  Google Scholar 

  15. Gassensmith, J. J., Baumes, J. M., Eberhard, J. & Smith, B. D. Cycloaddition to an anthracene derived macrocyclic receptor with supramolecular control of regioselectivity. Chem. Commun. 2517–2519 (2009).

  16. Aubry, J. M., Pierlot, C., Rigaudy, J. & Schmidt, R. Reversible binding of oxygen to aromatic compounds. Acc. Chem. Res. 36, 668–675 (2003).

    Article  CAS  Google Scholar 

  17. Bloodworth, A. J. & Eggelte, H. J. in Singlet Oxygen (ed. Frimer, A. A.) Vol. 2, 93–203 (CRC Press, 1985).

    CAS  Google Scholar 

  18. Matsumoto, M., Yamada, M. & Watanabe, N. Reversible 1,4-cycloaddition of singlet oxygen to N-substituted 2-pyridones: 1,4-endoperoxide as a versatile chemical source of singlet oxygen. Chem. Commun. 483–485 (2005).

  19. Fu, Y., Krasnovsky, A. A. Jr. & Foote, C. S. Singlet oxygen dimol-sensitized luminescence from thermally generated singlet oxygen. J. Am. Chem. Soc. 115, 10282–10285 (1993).

    Article  CAS  Google Scholar 

  20. Ishii, H., Tsukino, K., Sekine, M. & Nakata, M. Singlet oxygen-sensitized delayed emissions from hydrogen peroxide/gallic acid/potassium ferricyanide systems containing organic solvents. Chem. Phys. Lett. 474, 285–289 (2009).

    Article  CAS  Google Scholar 

  21. Murphy, S. T., Kondo, K. & Foote, C. S. Singlet-oxygen-sensitized delayed fluorescence: direct detection of triplet phthalocyanine as an intermediate. J. Am. Chem. Soc. 121, 3751–3755 (1999).

    Article  CAS  Google Scholar 

  22. Descalzo, A. B. et al. Phenanthrene-fused boron-dipyrromethanes as bright long-wavelength fluorophores. Org. Lett. 10, 1581–1584 (2008).

    Article  CAS  Google Scholar 

  23. So, M.-K., Xu, C., Loening, A. M., Gambir, S. S. & Rao, J. Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnol. 24, 339–343 (2006).

    Article  CAS  Google Scholar 

  24. Frangioni, J. V. The problem is background, not signal. Mol. Imaging 8, 303–304 (2009).

    Article  Google Scholar 

  25. Branchini, B. R. et al. Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal. Biochem. 396, 290–297 (2010).

    Article  CAS  Google Scholar 

  26. le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).

    Article  CAS  Google Scholar 

  27. Ma, N., Marshall, A. F. & Rao, J. Near-infrared light emitting luciferase via biomineralization. J. Am. Chem. Soc. 132, 6884–6885 (2010).

    Article  CAS  Google Scholar 

  28. Troy, T., Jekic-McCullen, D., Sambucetti, L. & Rice, B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging 3, 9–23 (2004).

    Article  CAS  Google Scholar 

  29. Tuchin, V. V. Tissue Optics 2nd edn (SPIE Press, 2007).

  30. Dysart, J. S., Singh, G. & Patterson, M. S. Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells. Photochem. Photobiol. 81, 196–205 (2005).

    Article  CAS  Google Scholar 

  31. Hatz, S., Poulsen, L. & Ogilby, P. R. Time-resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: effects of oxygen diffusion and oxygen concentration. Photochem. Photobiol. 81, 1284–1290 (2008).

    Article  Google Scholar 

  32. Pellieux, C., Dewilde, A., Pierlot, C. & Aubry, J.-M. Bactericidal and virucidal activities of singlet oxygen generated by thermolysis of naphthalene endoperoxides. Method. Enzymol. 319, 197–207 (2000).

    Article  CAS  Google Scholar 

  33. Otsu, K. et al. Impaired activation of caspase cascade during cell death induced by newly synthesized singlet oxygen generator, 1-buthylnaphthalene-4-propionate endoperoxide. Cell Biol. Int. 32, 1380–1387 (2008).

    Article  CAS  Google Scholar 

  34. Linet, M. S., Kim, K. P. & Rajaraman, P. Children's exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. Pediatr. Radiol. 39(Supp l), S4–S26 (2009)

    Article  Google Scholar 

  35. Agawa, H., Nakazono, M., Nanbu, S. & Zaitsu, K. Chemiluminescence change of polyphenol dendrimers with different core molecules. Org. Lett. 10, 5171–5174 (2008).

    Article  CAS  Google Scholar 

  36. Lee, C. C., Mackay, J. A., Fréchet, J. M. J. & Szoka, F. C. Designing dendrimers for biological applications. Nature Biotechnol. 23, 1517–1526 (2005).

    Article  CAS  Google Scholar 

  37. Xiao, S., Fu, N., Peckham, K. & Smith, B. D. Efficient synthesis of fluorescent squaraine rotaxane dendrimers. Org. Lett. 12, 140–143 (2010).

    Article  CAS  Google Scholar 

  38. Chatterjee, D. K., Fong, L. S. & Zhang, Y. Nanoparticles in photodynamimc therapy: an emerging paradigm. Adv. Drug Deliver. Rev. 60, 1627–1637 (2008).

    Article  CAS  Google Scholar 

  39. Tallury, P., Payton, K. & Swadeshmukul, S. Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine 3, 579–592 (2008).

    Article  CAS  Google Scholar 

  40. Borisov, S. M. & Klimant, I. Luminescent nanobeads for optical sensing and imaging of dissolved oxygen. Microchim. Acta 164, 7–15 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Science Foundation (grant no. CHE 0748761 to B.D.S.) and the University of Notre Dame Integrated Imaging Facility for financial support.

Author information

Authors and Affiliations

Authors

Contributions

B.D.S. conceived this project and J.M.B. helped design the experiments. J.J.G., J.-J.L., W.J.C., A.G.W., W.M.L., J.G. and M.K. contributed to the experimental work and data analysis. B.D.S. and J.M.B. wrote the paper, and all co-authors contributed comments.

Corresponding author

Correspondence to Bradley D. Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumes, J., Gassensmith, J., Giblin, J. et al. Storable, thermally activated, near-infrared chemiluminescent dyes and dye-stained microparticles for optical imaging. Nature Chem 2, 1025–1030 (2010). https://doi.org/10.1038/nchem.871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing