Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct transformation of graphene to fullerene

Abstract

Although fullerenes can be efficiently generated from graphite in high yield, the route to the formation of these symmetrical and aesthetically pleasing carbon cages from a flat graphene sheet remains a mystery. The most widely accepted mechanisms postulate that the graphene structure dissociates to very small clusters of carbon atoms such as C2, which subsequently coalesce to form fullerene cages through a series of intermediates. In this Article, aberration-corrected transmission electron microscopy directly visualizes, in real time, a process of fullerene formation from a graphene sheet. Quantum chemical modelling explains four critical steps in a top-down mechanism of fullerene formation: (i) loss of carbon atoms at the edge of graphene, leading to (ii) the formation of pentagons, which (iii) triggers the curving of graphene into a bowl-shaped structure and which (iv) subsequently zips up its open edges to form a closed fullerene structure.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental TEM images showing stages of fullerene formation directly from graphene.
Figure 2: Quantum chemical modelling of the four critical stages of fullerene formation from a small graphene flake.

References

  1. Smalley, R. E. Self-assembly of the fullerenes. Acc. Chem. Res. 25, 98–105 (1992).

    CAS  Article  Google Scholar 

  2. Goroff, N. S. Mechanism of fullerene formation. Acc. Chem. Res. 29, 77–83 (1996).

    CAS  Article  Google Scholar 

  3. Kroto, H. W. & McKay, K. The formation of quasi-icosahedral spiral shell carbon particles. Nature 331, 328–331 (1988).

    CAS  Article  Google Scholar 

  4. Heath, J. R. Synthesis of C60 from small carbon clusters: a model based on experiment and theory. ACS Symp. Ser. 481, 1–23 (1991).

    Google Scholar 

  5. Hunter, J. M., Fye, J. F., Roskamp, E. J. & Jarrold, M. F. Annealing carbon cluster ions—a mechanism for fullerene synthesis. J. Phys. Chem. 98, 1810–1818 (1992).

    Google Scholar 

  6. Rubin, Y., Kahr, M., Knobler, C. B., Diederich, F. & Wilkins, C. L. The higher oxides of carbon C8nO2n (n=3–5): synthesis, characterization and X-ray crystal structure. Formation of cyclo[n]carbon ions Cn+ (n=18, 24), Cn (n=18, 24, 30), and higher carbon ions including C60+ in laser desorption Fourier transform mass spectrometric experiments. J. Am. Chem. Soc. 113, 495–500 (1991).

    CAS  Article  Google Scholar 

  7. Irle, S., Zheng, G., Wang, Z. & Morokuma, K. The C60 formation puzzle ‘solved’: QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism. J. Chem. Phys. B 110, 14531–14545 (2006).

    CAS  Article  Google Scholar 

  8. Huang, J. Y., Ding, F., Jiao, K. & Yakobson, B. I. Real time microscopy, kinetics and mechanism of giant fullerene evaporation. Phys. Rev. Lett. 99, 175503 (2007).

    CAS  Article  Google Scholar 

  9. Yannoni, C. S., Bernier, P. P., Bethune, D. S., Meijer, G. & Salem, J. R. NMR determination of the bond lengths in C60 . J. Am. Chem. Soc. 113, 3190–3192 (1991).

    CAS  Article  Google Scholar 

  10. Hawkins, J. M., Meyer, A., Loren, S. & Nunlist, R. Statistical incorporation of carbon-13 13C2 units into C60 (buckminsterfullerene). J. Am. Chem. Soc. 113, 9394–9395 (1991).

    CAS  Article  Google Scholar 

  11. Ebbesen, T. W., Tabuchi, J. & Tanigaki, K. The mechanistics of fullerene formation. Chem. Phys. Lett. 191, 336–338 (1992).

    CAS  Article  Google Scholar 

  12. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  13. Girifalco, L. A. & Hodak, M. Van der Waals binding energies in graphitic structures. Phys. Rev. B 65, 125404 (2002).

    Article  Google Scholar 

  14. Ulbricht, H., Moos, G. & Hertel, T. Interaction of C60 with carbon nanotubes and graphite. Phys. Rev. Lett. 90, 095501 (2003).

    Article  Google Scholar 

  15. El-Barbary, A. A., Telling, R. H., Ewels, C. P., Heggie, M. I. & Briddon, P. R. Structure and energetics of the vacancy in graphite. Phys. Rev. B 68, 144107 (2003).

    Article  Google Scholar 

  16. Saito, M., Yamashita, K. & Oda, T. Magic numbers of graphene multivacancies. Jpn J. Appl. Phys. 46, L1185–L1187 (2007).

    CAS  Article  Google Scholar 

  17. Carlsson, J. M. & Scheffler, M. Structural, electronic and chemical properties of nanoporous carbon. Phys. Rev. Lett. 96, 046806 (2006).

    Article  Google Scholar 

  18. Girit, C. O. et al. Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009).

    CAS  Article  Google Scholar 

  19. Jia, X. et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701–1705 (2009).

    CAS  Article  Google Scholar 

  20. Lozovik, Y. E. & Popov, A. M. Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and cones. Uspekhi Fizicheskikh Nauk 167, 751–774 (1997).

    CAS  Article  Google Scholar 

  21. Eggen, B. R. et al. Autocatalysis during fullerene growth. Science 272, 87–90 (1996).

    CAS  Article  Google Scholar 

  22. Ioffe, I. N. et al. Fusing pentagons in a fullerene cage by chlorination: IPR D2C76 rearranges into non-IPR C76Cl24 . Angew. Chem. Int. Ed. 48, 5904–5907 (2009).

    CAS  Article  Google Scholar 

  23. Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992).

    CAS  Article  Google Scholar 

  24. Burden, A. P. & Hutchison, J. L. An investigation of the electron irradiation of graphite in a helium atmosphere using a modified electron microscope. Carbon 35, 567–578 (1997).

    CAS  Article  Google Scholar 

  25. Füller, T. & Banhart, F. In situ observation of the formation and stability of single fullerene molecules under electron irradiation. Chem. Phys. Lett. 254, 372–378 (1996).

    Article  Google Scholar 

  26. Otero, G. et al. Fullerenes from aromatic precursors by surface-catalysed cyclodehydrogenation. Nature 454, 865–868 (2008).

    CAS  Article  Google Scholar 

  27. Bunshah, R. F. et al. Fullerene formation in sputtering and electron beam evaporation processes. J. Phys. Chem. 96, 6866–6869 (1992).

    CAS  Article  Google Scholar 

  28. Xie, Z.-X. et al. Formation and coalescence of fullerene ions from direct laser vaporization. J. Chem. Soc. Faraday Trans. 91, 987–990 (1995).

    CAS  Article  Google Scholar 

  29. Scherzer, O. The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29 (1949).

    CAS  Article  Google Scholar 

  30. Chuvilin, A. & Kaiser, U. On the peculiarities of CBED pattern formation revealed by multislice simulation. Ultramicroscopy 104, 73–82 (2005).

    CAS  Article  Google Scholar 

  31. Shao, Y. et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006).

    CAS  Article  Google Scholar 

  32. Becke, A. D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (Career Acceleration Fellowship to E.B., grant no. EP/C545273/1 to A.N.K.), the European Science Foundation, the Royal Society, the DFG (German Research Foundation) and the State Baden-Württemberg within the SALVE (Sub Angström Low Voltage Electron Microscopy) project and by the DFG within Collaborative Research Centre (SFB) 569.

Author information

Authors and Affiliations

Authors

Contributions

A.C. conceived, designed and carried out experiments. U.K. contributed to the development of the experimental methodology and the discussion of the results. E.B. and N.A.B. performed theoretical modelling and contributed equally to this work. A.N.K. proposed the mechanism and wrote the original manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Andrey Chuvilin or Andrei N. Khlobystov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 403 kb)

Supplementary information

Supplementary Movie S1 (AVI 9094 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chuvilin, A., Kaiser, U., Bichoutskaia, E. et al. Direct transformation of graphene to fullerene. Nature Chem 2, 450–453 (2010). https://doi.org/10.1038/nchem.644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.644

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing