Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-spin ground states via electron delocalization in mixed-valence imidazolate-bridged divanadium complexes

Abstract

The field of molecular magnetism has grown tremendously since the discovery of single-molecule magnets, but it remains centred around the superexchange mechanism. The possibility of instead using a double-exchange mechanism (based on electron delocalization rather than Heisenberg exchange through a non-magnetic bridge) presents a tantalizing prospect for synthesizing molecules with high-spin ground states that are well isolated in energy. We now demonstrate that magnetic double exchange can be sustained by simple imidazolate bridging ligands, known to be well suited for the construction of coordination clusters and solids. A series of mixed-valence molecules of the type [(PY5Me2)VII(µ-Lbr) VIII(PY5Me2)]4+ were synthesized and their electron delocalization probed through cyclic voltammetry and spectroelectrochemistry. Magnetic susceptibility data reveal a well-isolated S = 5/2 ground state arising from double exchange for [(PY5Me2)2V2(µ-5,6-dimethylbenzimidazolate)]4+. Combined modelling of the magnetic data and spectral analysis leads to an estimate of the double-exchange parameter of B = 220 cm−1 when vibronic coupling is taken into account.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double-exchange mechanism in mixed-valence manganites.
Figure 2: Synthesis of the pentapyridine ligand PY5Me2.
Figure 3: Crystal structure of the dinuclear complex [(PY5Me2)2V2(µ-5,6-dmbzim)]3+ in 14·3.5MeCN·Et2O.
Figure 4: Electrochemical and spectroscopic characterization of the imidazolate-bridged divanadium complexes.
Figure 5: Variable-temperature magnetic susceptibility data.
Figure 6: Spin-state energy diagrams and adiabatic potentials under the influence of vibronic coupling.

Similar content being viewed by others

References

  1. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    Article  CAS  Google Scholar 

  2. Barra, A.-L., Debrunner, P., Gatteschi, D. Schulz, C. E. & Sessoli, R. Superparamagnetic-like behavior in an octanuclear iron cluster. Europhys. Lett. 35, 133–138 (1996).

    Article  CAS  Google Scholar 

  3. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

  4. Milios, C. J. et al. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 129, 2754–2755 (2007).

    Article  CAS  Google Scholar 

  5. Garanin, D. A. & Chudnovsky, E. M. Thermally activated resonant magnetization tunneling in molecular magnets: Mn12Ac and others. Phys. Rev. B 56, 11102–11118 (1997).

    Article  CAS  Google Scholar 

  6. Leuenberger, M. N. & Loss, D. Quantum computing in molecular systems. Nature 410, 789–793 (2001).

    Article  CAS  Google Scholar 

  7. Heersche, H. B. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    Article  CAS  Google Scholar 

  8. Kübler, J. Theory of Itinerant Electron Magnetism (Oxford Univ. Press, 2000).

  9. Liu, Y., Sellmyer, D. J. & Shindo, D. eds. Handbook of Advanced Magnetic Materials, Volume 4: Properties and Applications (Springer, 2006).

  10. Caulder, D. L. & Raymond, K. N. The rational design of high symmetry coordination clusters. J. Chem. Soc. Dalton Trans. 1185–1200 (1999).

  11. Ruben, M., Rojo, J., Romero-Salguero, F. J., Uppadine, L. H. & Lehn, J.-M. Grid-type metal ion architectures: functional metallosupramolecular arrays. Angew. Chem. Int. Ed. 43, 3644–3662 (2004).

    Article  CAS  Google Scholar 

  12. Fujita, M., Tominaga, M., Hori, A. & Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 38, 371–380 (2005).

    Article  Google Scholar 

  13. Beltran, L. M. C. & Long, J. R. Directed assembly of metal–cyanide cluster magnets. Acc. Chem. Res. 38, 325–334 (2005).

    Article  CAS  Google Scholar 

  14. Ako, A. M. et al. A ferromagnetically coupled Mn19 aggregate with a record S = 83/2 ground spin state. Angew. Chem. Int. Ed. 45, 4926–4929 (2006).

    Article  CAS  Google Scholar 

  15. Creutz, C. & Taube, H. Binuclear complexes of ruthenium ammines. J. Am. Chem. Soc. 95, 1086–1094 (1973).

    Article  CAS  Google Scholar 

  16. Hush, N. S. Intervalence-transfer absorption. Part 2. Theoretical considerations and spectroscopic data. Prog. Inorg. Chem. 8, 391–444 (1967).

    CAS  Google Scholar 

  17. Mayoh, B. & Day, P. Charge transfer in mixed-valence solids. Part VIII. Contribution of valence delocalization to the ferromagnetism of Prussian blue. J. Chem. Soc. Dalton Trans. 1483–1486 (1976).

  18. Creutz, C. Mixed valence complexes of d5d6 metal centers. Prog. Inorg. Chem. 30, 1–73 (1983).

    CAS  Google Scholar 

  19. Demadis, K. D., Hartshorn, C. M. & Meyer, T. J. The localised-to-delocalised transition in mixed-valence chemistry. Chem. Rev. 101, 2655–2685 (2001).

    Article  CAS  Google Scholar 

  20. Brunschwig, B. S., Creutz, C. & Sutin, N. Optical transitions of symmetrical mixed-valence systems in the class II–III transition regime. Chem. Soc. Rev. 31, 168–184 (2002).

    Article  CAS  Google Scholar 

  21. D'Alessandro, D. M. & Keene. F. R. Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions. Chem. Soc. Rev. 35, 424–440 (2006).

    CAS  PubMed  Google Scholar 

  22. Robin, M. B. & Day. P. Mixed-valence chemistry—a survey and classification. Adv. Inorg. Chem. Radiochem. 10, 247–403 (1967).

    Article  CAS  Google Scholar 

  23. Zener, C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).

    Article  CAS  Google Scholar 

  24. Baerner, K. & Yang, C. P. Double Exchange in Heusler Alloys and Related Materials (Research Signpost, 2007).

  25. Girerd, J.-J. Electron transfer between magnetic ions in mixed valence binuclear systems. J. Chem. Phys. 79, 1766–1775 (1983).

    Article  CAS  Google Scholar 

  26. Drillon, M., Pourroy, G. & Darriet, J. Electronic and vibronic coupling in a mixed-valence dimeric unit d1d2, magnetic aspects. Chem. Phys. 88, 27–37 (1984).

    Article  CAS  Google Scholar 

  27. Noodleman, L. & Baerends, E. J. Electronic structure, magnetic properties, ESR and optical spectra for 2-iron ferredoxin models by LCAO-Xα valence bond theory. J. Am. Chem. Soc. 106, 2316–2327 (1984).

    Article  CAS  Google Scholar 

  28. Blondin, G. & Girerd, J.-J. Interplay of electron exchange and electron transfer in metal polynuclear complexes in proteins or chemical models. Chem. Rev. 90, 1359–1376 (1990).

    Article  CAS  Google Scholar 

  29. Borras-Almenar, J. J., Coronado, E., Ostrovsky, S. M., Palii, A. V. & Tsukerblat, B. S. Localization vs. delocalization in the dimeric mixed-valence clusters in the generalized vibronic model. Magnetic manifestations. Chem. Phys. 240, 149–161 (1999).

    Article  CAS  Google Scholar 

  30. Yang, X., Hu, H. & Chen, Z. Effect of magnetic exchange, double exchange, vibronic coupling and asymmetry on magnetic properties in d2d3 mixed-valence dimers. Int. J. Quant. Chem. 103, 190–197 (2005).

    Article  CAS  Google Scholar 

  31. Beissel, T. et al. Exchange and double-exchange phenomena in linear homo- and heterotrinuclear nickel(II,III,IV) complexes containing six μ2-phenolato or μ2-thiophenolato bridging ligands. J. Am. Chem. Soc. 118, 12376–12390 (1996).

    Article  CAS  Google Scholar 

  32. Saal, C. et al. Magnetic investigations on a valence-delocalized Fe(II)–Fe(III) complex. Ber. Bunsenges. Phys. Chem. 100, 2086–2090 (1996).

    Article  CAS  Google Scholar 

  33. Shores, M. P. & Long, J. R. Tetracyanide-bridged divanadium complexes: redox switching between strong antiferromagnetic and strong ferromagnetic coupling. J. Am. Chem. Soc. 124, 3512–3513 (2002).

    Article  CAS  Google Scholar 

  34. Drüeke, S. et al. The novel mixed-valence, exchange-coupled, class III dimer [L2Fe2(μ-OH)3]2+ (L=N,N′,N′′-trimethyl-1,4,7-triazacyclononane). Chem. Commun. 1, 59–62 (1989).

    Article  Google Scholar 

  35. Ding, X.-Q. et al. Mössbauer and electron paramagnetic resonance study of the double-exchange and Heisenberg-exchange interactions in a novel binuclear iron(II/III) delocalized-valence compound. J. Chem. Phys. 92, 178–186 (1990).

    Article  CAS  Google Scholar 

  36. Gamelin, D. R., Bominaar, E. L., Kirk, M. L., Wieghardt, K. & Solomon, E. I. Excited-state contributions to ground-state properties of mixed-valence dimers: spectral and electronic-structural studies of [Fe2(OH)3(tmtacn)2]2+ related to the [Fe2S2]+ active sites of plant-type ferredoxins. J. Am. Chem. Soc. 118, 8085–8097 (1996).

    Article  CAS  Google Scholar 

  37. Barone, V., Bencini, A., Ciofini, I., Daul, C. A. & Totti, F. Density functional modeling of double exchange interactions in transition metal complexes. Calculation of the ground and excited state properties of [Fe2(OH)3(tmtacn)2]2+. J. Am. Chem. Soc. 120, 8357–8365 (1998).

    Article  CAS  Google Scholar 

  38. Dyker, G. & Muth, O. Synthesis of methylene- and methine-bridged oligopyridines. Eur. J. Org. Chem. 21, 4319–4322 (2004).

    Article  Google Scholar 

  39. Goldsmith, C. R., Jonas, R. T., Cole, A. P. & Stack, T. D. P. A spectrochemical walk: single-site perturbation within a series of six-coordinate ferrous complexes. Inorg. Chem. 41, 4642–4652 (2002).

    Article  CAS  Google Scholar 

  40. Gebbink, R. J. M. K., Jonas, R. T., Goldsmith, C. R. & Stack, T. D. P. A periodic walk: a series of first-row transition metal complexes with the pentadentate ligand PY5. Inorg. Chem. 41, 4633–4641 (2002).

    Article  Google Scholar 

  41. Canty, A. J., Minchin, N. J., Skelton, B. W. & White, A. H. Interaction of palladium(II) acetate with substituted pyridines, including a cyclometallation reaction and the structure of (acetato-O){meso-2,6-bis[1-phenyl-1-(pyridin-2-yl)ethyl]pyridine-N,N′,N′′}palladium(II) acetate trihydrate. J. Chem. Soc. Dalton Trans. 2205–2210 (1986).

  42. LeSuer, R. & Geiger, W. E. Improved electrochemistry in low-polarity media using tetrakis(pentafluorophenyl)borate salts as supporting electrolytes. Angew. Chem. Int. Ed. 39, 248–250 (2000).

    Article  CAS  Google Scholar 

  43. Zavarine, I. S. & Kubiak, C. P. A versatile variable temperature thin layer reflectance spectroelectrochemical cell. J. Electroanal. Chem. 495, 106–109 (2001).

    Article  CAS  Google Scholar 

  44. Ciampolini, M. & Mani, F. Vanadium(II) complexes of substituted imidazoles. Inorg. Chim. Acta 24, 91–95 (1977).

    Article  CAS  Google Scholar 

  45. Larkworthy, L. F. & Tucker, B. J. Hexaisothiocyanates of vanadium(II). J. Chem. Soc. Dalton Trans. 2042–2043 (1980).

  46. Miller, J. S. & Drillon, M. Magnetism: Molecules to Materials 155 (Wiley-VCH, 2001).

  47. Liu, Y., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. Directed assembly of metal–organic cubes from deliberately predesigned molecular building blocks. Chem. Commun. 2806–2807 (2004).

  48. Dinca, M., Harris, T. D., Iavarone, A. T. & Long, J. R. Synthesis and characterization of the cubic coordination cluster [CoIII6CoII2(IBT)12]14− (H3IBT=4,5-bis(tetrazol-5-yl)imidazole). J. Mol. Struct. 890, 139–143 (2008).

    Article  CAS  Google Scholar 

  49. Liu, Y., Kravtsov, V. C., Larsen, R. & Eddaoudi, M. Molecular building blocks approach to the assembly of zeolite-like metal–organic frameworks (ZMOFs) with extra-large cavities. Chem. Commun. 1488–1490 (2006).

  50. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by National Science Foundation (NSF) grant CHE-0617063. We thank the American–Australian Association and the 1851 Royal Commission for support of D.M.D. through postdoctoral fellowships, the Miller Research Foundation for providing a postdoctoral fellowship for D.M.J., and S. Baudron for preliminary experimental work and helpful discussions. The mass spectrometer was acquired with support from National Institutes of Health grant 1S10RR02239301, and C.P.K. acknowledges support through NSF grant CHE-0616279.

Author information

Authors and Affiliations

Authors

Contributions

B.B., D.M.D. and D.M.J. performed the majority of the experiments and data analysis. A.T.I. collected and analysed the mass spectrometry data. S.D.G. and C.P.K. assisted with acquisition of the FT-IR spectroelectrochemical data. J.R.L. designed and supervised the research. The paper was written by B.B., D.M.D. and J.R.L., and all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jeffrey R. Long.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1100 kb)

Supplementary information

Crystallographic information for the compound 2 (CIF 12 kb)

Supplementary information

Crystallographic information for the compound 4 (CIF 21 kb)

Supplementary information

Crystallographic information for the compound 12 (CIF 34 kb)

Supplementary information

Crystallographic information for the compound 14 (CIF 43 kb)

Supplementary information

Crystallographic information for the compound 15 (CIF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechlars, B., D'Alessandro, D., Jenkins, D. et al. High-spin ground states via electron delocalization in mixed-valence imidazolate-bridged divanadium complexes. Nature Chem 2, 362–368 (2010). https://doi.org/10.1038/nchem.585

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing