Article | Published:

Binding energies, lifetimes and implications of bulk and interface solvated electrons in water

Nature Chemistry volume 2, pages 274279 (2010) | Download Citation

Abstract

Solvated electrons in liquid water are one of the seemingly simplest, but most important, transients in chemistry and biology, but they have resisted disclosing important information about their energetics, binding motifs and dynamics. Here we report the first ultrafast liquid-jet photoelectron spectroscopy measurements of solvated electrons in liquid water. The results prove unequivocally the existence of solvated electrons bound at the water surface and of solvated electrons in the bulk solution, with vertical binding energies of 1.6 eV and 3.3 eV, respectively, and with lifetimes longer than 100 ps. The unexpectedly long lifetime of solvated electrons bound at the water surface is attributed to a free-energy barrier that separates surface and interior states. Beyond constituting important energetic and kinetic benchmark and reference data, the results also help to understand the mechanisms of a number of very efficient electron-transfer processes in nature.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Absorption spectra in irradiated water and some solutions – absorption spectra of hydrated electrons. Nature 197, 45–47 (1963).

  2. 2.

    , & Surface trapped excess electrons on ice. Phys. Rev. Lett. 95, 176801 (2005).

  3. 3.

    et al. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287, 1658–1660 (2000).

  4. 4.

    & Elementary lesions in DNA subunits: electron, hydrogen atom, proton, and hydride transfers. Acc. Chem. Res. 42, 563–572 (2009).

  5. 5.

    , & Electron attachment to nucleotides in aqueous solution. Chem. Phys. Chem. 7, 1885–1887 (2006).

  6. 6.

    , & The nature of aqueous tunneling pathways between electron-transfer proteins. Science 310, 1311–1313 (2005).

  7. 7.

    & Effects of cosmic rays on atmospheric chlorofluorocarbon dissociation and ozone depletion. Phys. Rev. Lett. 87, 078501 (2001).

  8. 8.

    Beyond radical thinking. Nature 461, 358–359 (2009).

  9. 9.

    et al. Resonant dissociative electron transfer of the presolvated electron to CCl4 in liquid: direct observation and lifetime of the CCl4* transition state. J. Chem. Phys. 128, 041102 (2008).

  10. 10.

    , & Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage. J. Am. Chem. Soc. 131, 11320–11322 (2009).

  11. 11.

    How do low-energy (0.1–2 eV) electrons cause DNA-strand breaks? Acc. Chem. Res. 39, 772–779 (2006).

  12. 12.

    , , & Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988).

  13. 13.

    & Non-equilibrium molecular evaporation of carboxylic-acid dimers. Nature 339, 527–529 (1989).

  14. 14.

    , & A molecular-beam study of the evaporation of water from a liquid jet. Z. Phys. D 10, 269–277 (1988).

  15. 15.

    et al. Interaction between liquid water and hydroxide revealed by core--hole de-excitation. Nature 455, 89–91 (2008).

  16. 16.

    & Photoemission from liquid aqueous solutions. Chem. Rev. 106, 1176–1211 (2006).

  17. 17.

    et al. Ultrafast phase transition in metastable water near liquid interfaces. Faraday Discuss. 141, 67–79 (2009).

  18. 18.

    et al. Ultrafast electronic spectroscopy for chemical analysis near liquid water interfaces: concepts and applications. Appl. Phys. A 96, 117–135 (2009).

  19. 19.

    , , & Electron localization in water clusters. II. Surface and internal states. J. Chem. Phys. 88, 4429–4447 (1988).

  20. 20.

    et al. Ab initio molecular dynamics simulation of a medium-sized water cluster anion: from an interior to a surface-located excess electron via a delocalized state. J. Phys. Chem. A 112, 6125–6133 (2008).

  21. 21.

    & First-principles, quantum-mechanical simulations of electron solvation by water clusters. Proc. Natl Acad. Sci. USA 103, 14282–14287 (2006).

  22. 22.

    , & Water heptamer with an excess electron: ab initio study. J. Chem. Phys. 118, 9981–9986 (2003).

  23. 23.

    , & Interior- and surface-bound excess electron states in large water cluster anions. J. Chem. Phys. 130, 124319 (2009).

  24. 24.

    & Electron binding motifs of (H2O)n clusters. J. Am. Chem. Soc. 128, 5828–5833 (2006).

  25. 25.

    & Analytic investigations of an electron-water molecule pseudo potential. II. Development of a new pair potential and molecular dynamics simulations. J. Chem. Phys. 117, 6186–6195 (2002).

  26. 26.

    , & Characterization of excess electrons in water-cluster anions by quantum simulations. Science 309, 914–917 (2005).

  27. 27.

    & Electronic absorption spectra of size-selected hydrated electron clusters: (H2O)n, n = 6–50. J. Chem. Phys. 106, 811–814 (1997).

  28. 28.

    , , & Photoelectron spectroscopy of the ‘missing’ hydrated electron clusters (H2O)n, n = 3, 5, 8 and 9: isomers and continuity with the dominant clusters n = 6, 7 and ≥11. Chem. Phys. Lett. 297, 90–96 (1998).

  29. 29.

    , & Photoelectron spectra of hydrated electron clusters vs. cluster size: connecting to bulk. Int. Rev. Phys. Chem. 27, 27–51 (2008).

  30. 30.

    , , & Photoelectron spectroscopy of large (water)n (n = 50–200) clusters at 4.7 eV. J. Chem. Phys. 125, 076101 (2006).

  31. 31.

    et al. Vibrational predissociation spectroscopy of the (H2O)6–21 clusters in the OH stretching region: evolution of the excess electron-binding signature into the intermediate cluster regime. J. Chem. Phys. 123, 244311 (2005).

  32. 32.

    et al. Observation of large water-cluster anions with surface-bound excess electrons. Science 307, 93–96 (2005).

  33. 33.

    et al. Hydrated electron dynamics: from clusters to bulk. Science 306, 669–671 (2004).

  34. 34.

    et al. Electrons in finite-sized water cavities: hydration dynamics observed in real time. Science 306, 672–675 (2004).

  35. 35.

    Spectroscopy and dynamics of excess electrons in clusters. Mol. Phys. 106, 2183–2197 (2008).

  36. 36.

    , , & von Issendorf, B. Low temperature photoelectron spectra of water cluster anions. J. Chem. Phys. 131, 144303 (2009).

  37. 37.

    , , & Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV. J. Chem. Phys. 125, 044515 (2006).

  38. 38.

    , & Novel precursors of solvated electrons in water: evidence for a charge transfer process. Phys. Rev. Lett. 85, 50–53 (2000).

  39. 39.

    et al. Photoemission spectroscopy of liquid water and aqueous solution: electron effective attenuation lengths and emission-angle anisotropy. J. Electron Spectrosc. Relat. Phenom. doi:10.1016/j.elspec.2009.08.007 (2009).

  40. 40.

    , , & Electron photodetachment from [Fe(CN)6]4−: photoelectron relaxation and geminate recombination. Chem. Phys. Lett. 342, 277–286 (2001).

  41. 41.

    & Adsorption of ions to the surface of dilute electrolyte solutions: the Jones–Ray effect revisited. J. Am. Chem. Soc. 127, 15446–15452 (2005).

  42. 42.

    , & Excess electron relaxation dynamics at water/air interfaces. J. Chem. Phys. 126, 234707 (2007).

  43. 43.

    et al. Detailed investigation of the femtosecond pump–probe spectroscopy of the hydrated electron. J. Phys. Chem. A 102, 6957–6966 (1998).

Download references

Acknowledgements

Discussions with D. Neumark and P. Jungwirth are acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft within the programmes SPP1134, GK 782 and SFB 755, the CRC (Nano-Spectroscopy and X-Ray Imaging) in Göttingen and the University of Leipzig.

Author information

Affiliations

  1. Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany

    • Katrin R. Siefermann
    • , Yaxing Liu
    • , Oliver Link
    •  & Bernd Abel
  2. Ostwald-Institut für Physikalische und Theoretische Chemie der Universität Leipzig, Linné-Strasse 2, D-04103 Leipzig, Germany

    • Evgeny Lugovoy
    •  & Bernd Abel
  3. MPI für Dynamik und Selbstorganisation, Bunsenstrasse 10, 37073 Göttingen, Germany

    • Manfred Faubel
    •  & Udo Buck
  4. Helmholtz-Zentrum Berlin für Materialien und Energie, and BESSY, Albert-Einstein-Strasse 15, 12489 Berlin, Germany

    • Bernd Winter

Authors

  1. Search for Katrin R. Siefermann in:

  2. Search for Yaxing Liu in:

  3. Search for Evgeny Lugovoy in:

  4. Search for Oliver Link in:

  5. Search for Manfred Faubel in:

  6. Search for Udo Buck in:

  7. Search for Bernd Winter in:

  8. Search for Bernd Abel in:

Contributions

B.A., M.F. and B.W. designed the experiments. K.R.S., Y.L., E.L. and O.L. performed the experiments. K.R.S. and Y.L. analysed the data. K.R.S., Y.L., O.L. and E.L. contributed materials and/or analysis tools. B.A., B.W. and U.B. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Bernd Abel.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchem.580

Further reading