Article | Published:

Towards quantum chemistry on a quantum computer

Nature Chemistry volume 2, pages 106111 (2010) | Download Citation

Abstract

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

  2. 2.

    Universal quantum simulators. Science 273, 1073–1078 (1996).

  3. 3.

    & Chemistry on the computer. Physics Today 61(4), 58–63 (2008).

  4. 4.

    & Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics. Chem. Phys. Lett. 475, 163–170 (2009).

  5. 5.

    et al. Pseudopotentials on grids: Application to the electronic, optical, and vibrational properties of silicon nanocrystals. J. Comput. Theor. Nanosci. 6, 1247–1261 (2009).

  6. 6.

    & Failure of time-dependent density functional theory for long-range charge-transfer excited states: The zincbacteriochlorin-bacterlochlorin and bacteriochlorophyll-spheroidene complexes. J. Am. Chem. Soc. 126, 4007–4016 (2004).

  7. 7.

    & Isomerization through conical intersections. Ann. Rev. Phys. Chem. 58, 613–634 (2007).

  8. 8.

    , & Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

  9. 9.

    & Benchmark variational coupled cluster doubles results. J. Chem. Phys. 113, 8873–8879 (2000).

  10. 10.

    & Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2586 (1997).

  11. 11.

    , , & Polynomial-time quantum algorithm for the simulation of chemical dynamics Proc. Natl Acad. Sci. USA 105, 18681–18686 (2008).

  12. 12.

    Efficient simulation of quantum systems by quantum computers. Proc. R. Soc. Lond. A 454, 313–322 (1998).

  13. 13.

    & Quantum algorithm for molecular properties and geometry optimization. J. Chem. Phys. (in the press); preprint at (2009).

  14. 14.

    & Calculating the thermal rate constant with exponential speedup on a quantum computer. Phys. Rev. E 59, 2429–2438 (1999).

  15. 15.

    , , & Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

  16. 16.

    , & Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance. Phys. Rev. Lett. 97, 050504 (2006).

  17. 17.

    , , & Resource requirements for fault-tolerant quantum simulation: The ground state of the transverse Ising model. Phys. Rev. A 79, 062314 (2009).

  18. 18.

    , , , & Quantum simulations on a quantum computer. Phys. Rev. Lett. 82, 5381–5384 (1999).

  19. 19.

    , , & Experimental simulation of a pairing Hamiltonian on an NMR quantum computer. Chem. Phys. Lett. 422, 20–24 (2006).

  20. 20.

    , , , & Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008).

  21. 21.

    et al. Quantum simulation of the Dirac equation. Preprint at: (2009).

  22. 22.

    Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

  23. 23.

    et al. Realization of the Cirac–Zoller controlled-NOT quantum gate Nature 422, 408–411 (2003).

  24. 24.

    et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).

  25. 25.

    , , , & Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

  26. 26.

    , , & Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447, 836–839 (2007).

  27. 27.

    et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003).

  28. 28.

    , & A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  29. 29.

    et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007).

  30. 30.

    et al. Experimental demonstration of a compiled version of Shor's Algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007).

  31. 31.

    et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nature Phys. 5, 134–140 (2009).

  32. 32.

    Quantum measurements and the Abelian Stabilizer Problem. Preprint at: (1995).

  33. 33.

    , , & Arbitrary accuracy iterative phase estimation algorithm as a two qubit benchmark. Phys. Rev. A 76, 030306(R) (2007).

  34. 34.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, 2001).

  35. 35.

    , & Modern Electronic Structure Theory (Wiley, 2000).

  36. 36.

    , & Experimental realization of arbitrary accuracy iterative phase estimation algorithms on ensemble quantum computers. Chinese Phys. Lett. 24, 3316–3319 (2007).

  37. 37.

    et al. Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054–1057 (1999).

  38. 38.

    et al. Implementation of the semiclassical quantum Fourier transform in a scalable system. Science 308, 997–1000 (2005).

  39. 39.

    Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

  40. 40.

    , & Polynomial-time simulation of pairing models on a quantum computer. Phys. Rev. Lett. 89, 057904 (2002).

  41. 41.

    , , & Quantum adiabatic evolution algorithms with different paths. Science 292, 472–475 (2000).

  42. 42.

    , & (eds) Special issue: Focus on single photons on demand New J. Phys. 6, (2004).

  43. 43.

    , & (eds) Special issue: Single-photon: detectors, applications, and measurement methods. J. Mod. Opt. 56, 2–3 (2009).

  44. 44.

    , & Quantum simulation of interacting high-dimensional systems: the influence of noise. Phys. Rev. A 78, 052325 (2008).

  45. 45.

    , , , & Simulation of quantum dynamics with quantum optical systems. Quant. Inf. Comp. 3, 15–37 (2003).

  46. 46.

    , & Self-consistent molecular orbital methods I. Use of Gaussian expansions of slater type atomic orbitals. J. Chem. Phys. 51, 2657–2664 (1969).

  47. 47.

    & Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, 1996).

  48. 48.

    et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3using a femtosecond laser. Opt. Lett. 33, 2281–2283 (2008).

Download references

Acknowledgements

We thank A. Perdomo, A. Steinberg, P. J. Love, A. D. Dutoi, G. Vidal and A. Fedrizzi for discussions. We acknowledge financial support from the Australian Research Council (ARC) Federation Fellow and Centre of Excellence programs, and the IARPA-funded US Army Research Office Contracts W911NF-0397 and W911NF-07-0304. B.J.P. was the recipient of an ARC Queen Elizabeth II Fellowship (DP0878523) and I.K. a recipient of the Joyce and Zlatko Baloković Scholarship. A.A.G. thanks the Alfred P. Sloan Foundation and the Camille and Henry Dreyfus Foundation for support.

Author information

Author notes

    • J. D. Biamonte
    • , M. Mohseni
    •  & M. Barbieri

    Present address: Laboratoire Charles Fabry, Institut d'Optique, 91127 Palaiseau, France (M.B.); Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK (J.D.B.); Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA (M.M.)

Affiliations

  1. Department of Physics

    • B. P. Lanyon
    • , G. G. Gillett
    • , M. E. Goggin
    • , M. P. Almeida
    • , B. J. Powell
    • , M. Barbieri
    •  & A. G. White
  2. Centre for Quantum Computer Technology

    • B. P. Lanyon
    • , G. G. Gillett
    • , M. P. Almeida
    • , M. Barbieri
    •  & A. G. White
  3. Centre for Organic Photonics & Electronics, University of Queensland, Brisbane 4072, Australia

    • B. J. Powell
  4. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA

    • J. D. Whitfield
    • , I. Kassal
    • , J. D. Biamonte
    • , M. Mohseni
    •  & A. Aspuru-Guzik
  5. Department of Physics, Truman State University, Kirksville, Missouri 63501, USA

    • M. E. Goggin

Authors

  1. Search for B. P. Lanyon in:

  2. Search for J. D. Whitfield in:

  3. Search for G. G. Gillett in:

  4. Search for M. E. Goggin in:

  5. Search for M. P. Almeida in:

  6. Search for I. Kassal in:

  7. Search for J. D. Biamonte in:

  8. Search for M. Mohseni in:

  9. Search for B. J. Powell in:

  10. Search for M. Barbieri in:

  11. Search for A. Aspuru-Guzik in:

  12. Search for A. G. White in:

Contributions

B.P.L., J.D.W., I.K., M.M., A.A.G. and A.G.W. conceived and designed the experiments, B.P.L., G.G.G., M.E.G. and M.P.A. performed the experiments, B.P.L. and G.G.G. analysed the data, J.D.W. performed the classical preprocessing. All authors discussed the results and co-wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to B. P. Lanyon or A. Aspuru-Guzik.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchem.483