Rectification and stability of a single molecular diode with controlled orientation

Abstract

In the molecular electronics field it is highly desirable to engineer the structure of molecules to achieve specific functions. In particular, diode (or rectification) behaviour in single molecules is an attractive device function. Here we study charge transport through symmetric tetraphenyl and non-symmetric diblock dipyrimidinyldiphenyl molecules covalently bound to two electrodes. The orientation of the diblock is controlled through a selective deprotection strategy, and a method in which the electrode–electrode distance is modulated unambiguously determines the current–voltage characteristics of the single-molecule device. The diblock molecule exhibits pronounced rectification behaviour compared with its homologous symmetric block, with current flowing from the dipyrimidinyl to the diphenyl moieties. This behaviour is interpreted in terms of localization of the wave function of the hole ground state at one end of the diblock under the applied field. At large forward current, the molecular diode becomes unstable and quantum point contacts between the electrodes form.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Preparation of the SAMs.
Figure 2: Current traces and conductance histograms for the symmetric and non-symmetric molecules.
Figure 3: Components of the current traces during a single dipyrimidinyl–diphenyl bridge formation.
Figure 4: Current-voltage (I–V) curves for the symmetric and non-symmetric molecules.
Figure 5: Two types of instability behaviours of the molecular junctions.
Figure 6: Representation of the rectification mechanism for the non-symmetric molecule.

References

  1. 1

    Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    CAS  Article  Google Scholar 

  2. 2

    Martin, A. S., Sambles, J. R. & Ashwell, G. J. Molecular rectifier. Phys. Rev. Lett. 70, 218–221 (1993).

    CAS  Article  Google Scholar 

  3. 3

    Chabinyc Michael, L. et al. Molecular rectification in a metal–insulator–metal junction based on self-assembled monolayers. J. Am. Chem. Soc. 124, 11730–11736 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Elbing, M. et al. A single-molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Smit, R. H. M. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Lee, Y., Carsten, B. & Yu, L. Understanding the anchoring group effect of molecular diodes on rectification. Langmuir 25, 1495–1499 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Morales, G. M. et al. Inversion of the rectifying effect in diblock molecular diodes by protonation. J. Am. Chem. Soc. 127, 10456–10457 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Li, X. et al. Conductance of single alkanedithiols. Conduction mechanism and effect of molecule–electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

    CAS  Article  Google Scholar 

  11. 11

    He, J., Fu, Q., Lindsay, S., Ciszek, J. W. & Tour, J. M. Electrochemical origin of voltage-controlled molecular conductance switching. J. Am. Chem. Soc. 128, 14828–14835 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Xiao, X., Xu, B. & Tao, N. J. Measurement of single molecule conductance: benzenedithiol and benzenedimethanethiol. Nano Lett. 4, 267–271 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Xu, B., Xiao, X. & Tao, N. J. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Xu, B. Modulating the conductance of a Au–octanedithiol–Au molecular junction. Small 3, 2061–2065 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Xia, J. L., Díez-Perez, I. & Tao, N. J. Electron transport in single molecules measured by a distance–modulation assisted break junction method. Nano Lett. 8, 1960–1964 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Haiss, W. et al. Precision control of single-molecule electrical junctions. Nat. Mater. 5, 995–1002 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Haiss, W. et al. Measurement of single molecule conductivity using the spontaneous formation of molecular wires. Phys. Chem. Chem. Phys. 6, 4330–4337 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Reichert, J. et al. Driving current through single organic molecules. Phys. Rev. Lett. 88, 176804/1–176804/4 (2002).

    CAS  Google Scholar 

  19. 19

    Huang, Z. et al. Local ionic and electron heating in single-molecule junctions. Nature Nanotech. 2, 698–703 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Huang, Z., Xu, B., Chen, Y., Di Ventra, M. & Tao, N. Measurement of current-induced local heating in a single molecule junction. Nano Lett. 6, 1240–1244 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Tsutsui, M., Taniguchi, M. & Kawai, T. Local heating in metal–molecule–metal junctions. Nano Lett. 8, 3293–3297 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Ioffe, Z. et al. Detection of heating in current-carrying molecular junctions by Raman scattering. Nature Nanotech. 3, 727–732 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Stewart, D. R. et al. Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Teramae, Y. et al. High-bias breakdown of Au/1,4-benzenedithiol/Au junctions. Appl. Phys. Lett. 93, 083121 (2008).

    Article  Google Scholar 

  25. 25

    Strachan, D. R. et al. Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl. Phys. Lett. 86, 043109 (2005).

    Article  Google Scholar 

  26. 26

    Esen, G. & Fuhrer, M. S. Temperature control of electromigration to form gold nanogap junctions. Appl. Phys. Lett. 87, 263101 (2005).

    Article  Google Scholar 

  27. 27

    Boussaad, S. & Tao, N. J. Atom-size contacts and gaps between electrodes fabricated with a self-terminated electrochemical method. Appl. Phys. Lett. 80, 2398–2400 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Thompson, S. P. & von Engel, A. Field emission of metal ions and microparticles. J. Phys. D. 15, 925–931 (1982).

    CAS  Article  Google Scholar 

  29. 29

    Oleynik, I. I., Kozhushner, M. A., Posvyanskii, V. S. & Yu, L. Rectification mechanism in diblock oligomer molecular diodes. Phys. Rev. Lett. 96, 096803 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996); erratum 78, 1396 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Nagy, G., Mayer, D. & Wandlowski, T. Distance tunnelling characteristics of solid/liquid interfaces: Au(111)/Cu2 + /H2SO4 . PhysChemComm 5, 112–116 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (I.D.-P., Y.L., L.Y., L.A., I.I.O. and N.J.T.), Department of Energy (J.H. and N.J.T.) and the Marie-Curie M.C.-I.O.F. within the European Commission Seventh Framework program (I.D.-P.) for financial support.

Author information

Affiliations

Authors

Contributions

N.J.T. and L.Y. conceived this project. I.D.-P. and J.H. conducted experiments and analysed data. Y.L. synthesized the molecules. I.I.O. designed and supervised the theoretical study and L.A. and M.A.K. did the calculations.

Corresponding authors

Correspondence to Luping Yu or Nongjian Tao.

Supplementary information

Supplementary information

Supplementary information (PDF 778 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Díez-Pérez, I., Hihath, J., Lee, Y. et al. Rectification and stability of a single molecular diode with controlled orientation. Nature Chem 1, 635–641 (2009). https://doi.org/10.1038/nchem.392

Download citation

Further reading