Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells


Catalytic anticancer metallodrugs active at low doses could minimize side-effects, introduce novel mechanisms of action that combat resistance and widen the spectrum of anticancer-drug activity. Here we use highly stable chiral half-sandwich organometallic Os(II) arene sulfonyl diamine complexes, [Os(arene)(TsDPEN)] (TsDPEN, N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine), to achieve a highly enantioselective reduction of pyruvate, a key intermediate in metabolic pathways. Reduction is shown both in aqueous model systems and in human cancer cells, with non-toxic concentrations of sodium formate used as a hydride source. The catalytic mechanism generates selectivity towards ovarian cancer cells versus non-cancerous fibroblasts (both ovarian and lung), which are commonly used as models of healthy proliferating cells. The formate precursor N-formylmethionine was explored as an alternative to formate in PC3 prostate cancer cells, which are known to overexpress a deformylase enzyme. Transfer-hydrogenation catalysts that generate reductive stress in cancer cells offer a new approach to cancer therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synthesis of osmium(II) arene sulfonamide catalysts 18.
Figure 2: Catalytic reduction of pyruvate to lactate in aqueous solution by [Os(p-cymene)(TsDPEN)] (2) using formate as a hydride source.
Figure 3: Potentiation of the antiproliferative activity of the osmium p-cymene complex S,S-2 or biphenyl complex S,S-7.
Figure 4: The enantioselectivity for the transfer hydrogenation (reduction) of pyruvate to afford selectively D-lactate is conserved in cells.


  1. 1

    Mjos, K. D. & Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev. 114, 4540–4563 (2014).

    CAS  PubMed  Google Scholar 

  2. 2

    Florea, A.-M. & Büsselberg, D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3, 1351–1371 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Ward, T. R. Artificial metalloenzymes based on the biotin−avidin technology: enantioselective catalysis and beyond. Acc. Chem. Res. 44, 47–57 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Dougan, S. J., Habtemariam, A., McHale, S. E., Parsons, S. & Sadler, P. J. Catalytic organometallic anticancer complexes. Proc. Natl Acad. Sci. USA 105, 11628–11633 (2008).

    CAS  PubMed  Google Scholar 

  5. 5

    Soldevila-Barreda, J. J., Romero-Canelón, I., Habtemariam, A. & Sadler, P. J. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat. Commun. 6, 6582 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Liu, Z. et al. The potent oxidant anticancer activity of organoiridium catalysts. Angew. Chem. Int. Ed. 53, 3941–3946 (2014).

    CAS  Google Scholar 

  7. 7

    Fu, Y. et al. The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(II) arene anticancer complexes. Chem. Sci. 3, 2485–2494 (2012).

    CAS  Google Scholar 

  8. 8

    Sasmal, P. K., Streu, C. N. & Meggers, E. Metal complex catalysis in living biological systems. Chem. Commun. 49, 1581–1587 (2013).

    CAS  Google Scholar 

  9. 9

    Völker, T., Dempwolff, F., Graumann, P. L. & Meggers, E. Progress towards bioorthogonal catalysis with organometallic compounds. Angew. Chem. Int. Ed. 53, 10536–10540 (2014).

    Google Scholar 

  10. 10

    Tomás-Gamasa, M., Martínez-Calvo, M., Couceiro, J. R. & Mascareñas, J. L. Transition metal catalysis in the mitochondria of living cells. Nat. Commun. 7, 12538 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Hsu, H.-T., Trantow, B. M., Waymouth, R. M. & Wender, P. A. Bioorthogonal catalysis: a general method to evaluate metal-catalyzed reactions in real time in living systems using a cellular luciferase reporter system. Bioconjugate Chem. 27, 376–382 (2016).

    CAS  Google Scholar 

  12. 12

    Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    CAS  PubMed  Google Scholar 

  13. 13

    Coriat, R. et al. The organotelluride catalyst LAB027 prevents colon cancer growth in the mice. Cell Death Dis. 2, e191 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Yu, Z., Han, M. & Cowan, J. A. Toward the design of a catalytic metallodrug: selective cleavage of G-quadruplex telomeric DNA by an anticancer copper–acridine–ATCUN complex. Angew. Chem. Int. Ed. 54, 1901–1905 (2015).

    CAS  Google Scholar 

  15. 15

    Soldevila-Barreda, J. J., Habtemariam, A., Romero-Canelón, I. & Sadler, P. J. Half-sandwich rhodium(III) transfer hydrogenation catalysts: reduction of NAD+ and pyruvate, and antiproliferative activity. J. Inorg. Biochem. 153, 322–333 (2015).

    CAS  PubMed  Google Scholar 

  16. 16

    Okamoto, Y., Köhler, V., Paul, C. E., Hollmann, F. & Ward, T. R. Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme. ACS Catal. 6, 3553–3557 (2016).

    CAS  Google Scholar 

  17. 17

    Dürrenberger, M. et al. Artificial transfer hydrogenases for the enantioselective reduction of cyclic imines. Angew. Chem. Int. Ed. 50, 3026–3029 (2011).

    Google Scholar 

  18. 18

    Collot, J. et al. Artificial metalloenzymes for enantioselective catalysis based on biotin−avidin. J. Am. Chem. Soc. 125, 9030–9031 (2003).

    CAS  PubMed  Google Scholar 

  19. 19

    Hashiguchi, S., Fujii, A., Takehara, J., Ikariya, T. & Noyori, R. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium(II) complexes. J. Am. Chem. Soc. 117, 7562–7563 (1995).

    CAS  Google Scholar 

  20. 20

    Fujii, A., Hashiguchi, S., Uematsu, N., Ikariya, T. & Noyori, R. Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid−triethylamine mixture. J. Am. Chem. Soc. 118, 2521–2522 (1996).

    CAS  Google Scholar 

  21. 21

    Haack, K.-J., Hashiguchi, S., Fujii, A., Ikariya, T. & Noyori, R. The catalyst precursor, catalyst, and intermediate in the Ru(II)-promoted asymmetric hydrogen transfer between alcohols and ketones. Angew. Chem. Int. Ed. 36, 285–288 (1997).

    CAS  Google Scholar 

  22. 22

    Noyori, R. & Hashiguchi, S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 30, 97–102 (1997).

    CAS  Google Scholar 

  23. 23

    Coverdale, J. P. C. et al. Easy to synthesize, robust organo–osmium asymmetric transfer hydrogenation catalysts. Chem. Eur. J. 21, 8043–8046 (2015).

    CAS  PubMed  Google Scholar 

  24. 24

    Liu, Z. et al. Organometallic half-sandwich iridium anticancer complexes. J. Med. Chem. 54, 3011–3026 (2011).

    CAS  PubMed  Google Scholar 

  25. 25

    Ling, B. et al. D-Lactate altered mitochondrial energy production in rat brain and heart but not liver. Nutr. Metab. 9, 6 (2012).

    CAS  Google Scholar 

  26. 26

    Hirschhaeuser, F., Sattler, U. G. A. & Mueller-Klieser, W. Lactate: a metabolic key player in cancer. Cancer Res. 71, 6921–6925 (2011).

    CAS  PubMed  Google Scholar 

  27. 27

    Doherty, J. R. & Cleveland, J. L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 123, 3685–3692 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Koukourakis, M. I. et al. Lactate dehydrogenase 5 expression in squamous cell head and neck cancer relates to prognosis following radical or postoperative radiotherapy. Oncology 77, 285–292 (2009).

    CAS  PubMed  Google Scholar 

  29. 29

    Koukourakis, M. I. et al. Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br. J. Cancer 89, 877–885 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Hileman, E. O., Liu, J., Albitar, M., Keating, M. J. & Huang, P. Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother. Pharmacol. 53, 209–219 (2004).

    CAS  PubMed  Google Scholar 

  31. 31

    Pennington, J. D. et al. Redox-sensitive signaling factors as a novel molecular targets for cancer therapy. Drug Resist. Update 8, 322–330 (2005).

    CAS  Google Scholar 

  32. 32

    Peacock, A. F. A. et al. Tuning the reactivity of osmium(II) and ruthenium(II) arene complexes under physiological conditions. J. Am. Chem. Soc. 128, 1739–1748 (2006).

    CAS  PubMed  Google Scholar 

  33. 33

    Wang, F. et al. Controlling ligand substitution reactions of organometallic complexes: tuning cancer cell cytotoxicity. Proc. Natl Acad. Sci. USA 102, 18269–18274 (2005).

    CAS  PubMed  Google Scholar 

  34. 34

    Bruijnincx, P. C. A. & Sadler, P. J. Controlling platinum, ruthenium and osmium reactivity for anticancer drug design. Adv. Inorg. Chem. 61, 1–62 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Lau, J. K.-C. & Ensing, B. Hydrolysis of cisplatin—a first-principles metadynamics study. Phys. Chem. Chem. Phys. 12, 10348–10355 (2010).

    CAS  PubMed  Google Scholar 

  36. 36

    Needham, R. J. et al. In-cell activation of organo–osmium(II) anticancer complexes. Angew. Chem. Int. Ed. 56, 1017–1020 (2017).

    CAS  Google Scholar 

  37. 37

    Hoeferlin, L. A., Oleinik, N. V., Krupenko, N. I. & Krupenko, S. A. Activation of p21-dependent G1/G2 arrest in the absence of DNA damage as an antiapoptotic response to metabolic stress. Genes Cancer 2, 889–899 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Dasari, S. & Tchounwou, P. B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378 (2014).

    CAS  Google Scholar 

  39. 39

    Ewaschuk, J. B., Naylor, J. M. & Zello, G. A. D-Lactate in human and ruminant metabolism. J. Nutr. 135, 1619–1625 (2005).

    CAS  PubMed  Google Scholar 

  40. 40

    Yamakawa, M., Yamada, I. & Noyori, R. CH/π attraction: the origin of enantioselectivity in transfer hydrogenation of aromatic carbonyl compounds catalyzed by chiral η6-arene-ruthenium(II) complexes. Angew. Chem. Int. Ed. 40, 2818–2821 (2001).

    CAS  Google Scholar 

  41. 41

    Brandt, P., Roth, P. & Andersson, P. G. Origin of enantioselectivity in the Ru(arene)(amino alcohol)-catalyzed transfer hydrogenation of ketones. J. Org. Chem. 69, 4885–4890 (2004).

    CAS  PubMed  Google Scholar 

  42. 42

    Dub, P. A. & Ikariya, T. Quantum chemical calculations with the inclusion of nonspecific and specific solvation: asymmetric transfer hydrogenation with bifunctional ruthenium catalysts. J. Am. Chem. Soc. 135, 2604–2619 (2013).

    CAS  PubMed  Google Scholar 

  43. 43

    Dub, P. A. & Gordon, J. C. The mechanism of enantioselective ketone reduction with Noyori and Noyori–Ikariya bifunctional catalysts. Dalton Trans. 45, 6756–6781 (2016).

    CAS  PubMed  Google Scholar 

  44. 44

    Handgraaf, J.-W. & Meijer, E. J. Realistic modeling of ruthenium-catalyzed transfer hydrogenation. J. Am. Chem. Soc. 129, 3099–3103 (2007).

    CAS  PubMed  Google Scholar 

  45. 45

    Bligh, C. M., Anzalone, L., Jung, Y. C., Zhang, Y. & Nugent, W. A. Preparation of both C5′ epimers of 5′-C-methyladenosine: reagent control trumps substrate control. J. Org. Chem. 79, 3238–3243 (2014).

    CAS  PubMed  Google Scholar 

  46. 46

    Latham, T. et al. Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res. 40, 4794–4803 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Vichai, V. & Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protocols 1, 1112–1116 (2006).

    CAS  PubMed  Google Scholar 

  48. 48

    Venzago, C., Popp, M., Kovac, J. & Kunkel, A. Pharmacopeial requirements for elemental impurities: a novel approach to the trace determination of osmium by oxidative pressure vessel sample digestion and measurement using inductively coupled plasma mass spectrometry (ICP-MS) after complexation and stabilisation. J. Anal. At. Spectrom. 28, 1125–1129 (2013).

    CAS  Google Scholar 

Download references


We thank the European Research Council (grant no. 247450 and no. 324594), Science City (Advantage West Midlands and the European Regional Development Fund), Warwick Collaborative Postgraduate Research Scholarship and Bruker Daltonics (studentship for J.P.C.C.), Engineering and Physical Research Council/Cancer Research UK (grant no. C53561/A19933) for support, and EU COST Action CM1105 for stimulating discussions. Some reduced precursors for dimer synthesis were kindly provided by K. T. Bhayat and R. Needham. We thank L. Song and P. Aston for assistance with mass spectrometry, A. Knight, H. E. Bridgewater and J. I. Song for assistance with cell experiments and I. Prokes for assistance with NMR spectroscopy.

Author information




All the authors were involved with the design and interpretation of the experiments and with the writing of the manuscript. Chemical and biological experiments were carried out by J.P.C.C., I.R.-C., C.S.-C. and A.H. G.J.C. carried out the X-ray crystallography. All the authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Peter J. Sadler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2965 kb)

Supplementary information

Crystallographic data for compound RR-7. (CIF 1656 kb)

Supplementary information

Crystallographic data for compound SS-7. (CIF 1132 kb)

Supplementary information

Life Sciences Reporting Summary (PDF 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coverdale, J., Romero-Canelón, I., Sanchez-Cano, C. et al. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nature Chem 10, 347–354 (2018).

Download citation

Further reading