Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation

Abstract

Infrared (IR) excitation of vibrations that participate in the reaction coordinate of an otherwise thermally driven chemical reaction are believed to lead to its acceleration. Attempts at the practical realization of this concept have been hampered so far by competing processes leading to sample heating. Here we demonstrate, using femtosecond IR-pump IR-probe experiments, the acceleration of urethane and polyurethane formation due to vibrational excitation of the reactants for 1:1 mixtures of phenylisocyanate and cyclohexanol, and toluene-2,4-diisocyanate and 2,2,2-trichloroethane-1,1-diol, respectively. We measured reaction rate changes upon selective vibrational excitation with negligible heating of the sample and observed an increase of the reaction rate up to 24%. The observation is rationalized using reactant and transition-state structures obtained from quantum chemical calculations. We subsequently used IR-driven reaction acceleration to write a polyurethane square on sample windows using a femtosecond IR pulse.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2: Energetics (in kcal mol−1) and geometries for the reaction of PHI with CH-ol in THF for reactant R1, R2, the TS and product CC.
Figure 3: IR absorbance changes with time after mixing PHI and CH-ol without illumination (black lines) and with laser excitation at 3,500 cm−1 (red lines) for times at 0 and 300 min, PHI and CH-ol at 0.75 M, and 0.1 mm sample thickness.
Figure 4: Absorbance difference spectra averaged with respect to selected delay time intervals upon excitation of CH-ol ν(OH) at about 3,500 cm−1 of a 1:1 mixture of CH-ol and PHI in THF.
Figure 5: Polyurethane square generated with IR excitation of a TDI and TCD solution at 2,270 cm−1 due to IR-pulse-induced reaction acceleration.

References

  1. 1

    Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014).

  2. 2

    Decker, C. & Elzaouk, B. Laser-induced crosslinking polymerization of acrylic photoresists. J. Appl. Polym. Sci. 65, 833–844 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Malinauskas, M., Farsari, M., Piskarskas, A. & Juodkazis, S. Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys. Rep. 533, 1–31 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Serbin, J. et al. Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt. Lett. 28, 301–303 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Li, L., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Gerasimov, T. G. & Snavely, D. L. Vibrational photopolymerization of methyl methacrylate and quantitative analysis of polymerization results. Macromolecules 35, 5796–5800 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Gu, H. & Snavely, D. L. Vibrational overtone initiated photopolymerization of acrylonitrile. J. Appl. Polym. Sci. 90, 565–571 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Crim, F. F. Selective excitation studies of unimolecular reaction dynamics. Ann. Rev. Phys. Chem. 35, 657–691 (1984).

    CAS  Article  Google Scholar 

  9. 9

    Fleming, R. R. & Rizzo, T. R. Infrared spectrum of t-butyl hydroperoxide excited to the 4νOH vibrational overtone level. J. Chem. Phys. 95, 1461–1465 (1991).

    CAS  Article  Google Scholar 

  10. 10

    Nesbitt, D. J. & Field, R. W. Vibrational energy flow in highly excited molecules: role of intramolecular vibrational redistribution. J. Chem. Phys. 100, 12735–12756 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Miller, Y., Chaban, G. M., Finlayson-Pitts, B. J. & Gerber, R. B. Photochemical processes induced by vibrational overtone excitations: dynamics simulations for cis-HONO, trans-HONO, HNO3, and HNO3−H2O. J. Phys. Chem. A 110, 5342–5354 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Koga, N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions the kinetic compensation effect. Thermochim. Acta 244, 1–20 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Smith, I. W. M. The temperature-dependence of elementary reaction rates: beyond Arrhenius. Chem. Soc. Rev. 37, 812–826 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Atkins, P. W. Physical Chemistry Vol. 5 (Oxford Univ. Press, 1994).

    Google Scholar 

  15. 15

    Dunning, G. T. et al. Vibrational relaxation and microsolvation of DF after F-atom reactions in polar solvents. Science 347, 530–533 (2015).

    CAS  Article  Google Scholar 

  16. 16

    González, L. & Kühn, O. in Handbook of Hydrogen Transfer Vol. 1 (eds Hynes, J. T., Klinman, J. P., Limbach, H.-H. & Schowen, R. L.) 79 (Wiley-VCH, 2006).

    Google Scholar 

  17. 17

    Shapiro, M. & Brumer, P. Quantum Control of Molecular Processes 2nd edn (Wiley-VCH, 2011).

    Book  Google Scholar 

  18. 18

    Kühn, O. & Wöste, L. (eds) Analysis and Control of Ultafast Photoinduced Reactions, Series in Chemical Physics Vol. 87 (Springer, 2007).

  19. 19

    Ventalon, C. et al. Coherent vibrational climbing in carboxyhemoglobin. Proc. Natl Acad. Sci. USA 101, 13216–13220 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Strasfeld, D. B., Shim, S.-H. & Zanni, M. T. Controlling vibrational excitation with shaped mid-IR pulses. Phys. Rev. Lett. 99, 038102–038106 (2007).

    Article  Google Scholar 

  21. 21

    Delor, M. et al. Toward control of electron transfer in donor–acceptor molecules by bond-specific infrared excitation. Science 346, 1492–1495 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Lin, Z. et al. Modulating unimolecular charge transfer by exciting bridge vibrations. J. Am. Chem. Soc. 131, 18060–18062 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Witte, T. et al. Controlling molecular ground-state dissociation by optimal vibrational ladder climbing. J. Chem. Phys. 118, 2021–2024 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Dian, B. C., Longarte, A. & Zwier, T. S. Conformational dynamics in a dipeptide after single-mode vibrational excitation. Science 296, 2369–2373 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Schanz, R., Boţan, V. & Hamm, P. A femtosecond study of the infrared-driven cis–trans isomerization of nitrous acid (HONO). J. Chem. Phys. 122, 044509 (2005).

    Article  Google Scholar 

  26. 26

    Heyne, K., Nibbering, E. T. J., Elsaesser, T., Petković, M. & Kühn, O. Cascaded energy redistribution upon O−H stretching excitation in an intramolecular hydrogen bond. J. Phys. Chem. A 108, 6083–6086 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Rubtsov, I. V. Relaxation-assisted two-dimensional infrared (RA 2DIR) method: accessing distances over 10 Å and measuring bond connectivity patterns. Acc. Chem. Res. 42, 1385–1394 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Kasyanenko, V. M., Tesar, S. L., Rubtsov, G. I., Burin, A. L. & Rubtsov, I. V. Structure dependent energy transport: relaxation-assisted 2DIR measurements and theoretical studies. J. Phys. Chem. B 115, 11063–11073 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Kasyanenko, V. M., Keiffer, P. & Rubtsov, I. V. Intramolecular vibrational coupling contribution to temperature dependence of vibrational mode frequencies. J. Chem. Phys. 136, 144503 (2012).

    Article  Google Scholar 

  30. 30

    Heyne, K. et al. Coherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase. J. Chem. Phys. 121, 902–913 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Owrutsky, J. C., Raftery, D. & Hochstrasser, R. M. Vibrational relaxation dyanmics in solutions. Annu. Rev. Phys. Chem. 45, 519–555 (1994).

    CAS  Article  Google Scholar 

  32. 32

    Windhorn, L. et al. Getting ahead of IVR: a demonstration of mid-infrared molecular dissociation on sub-statistical timescale. J. Chem. Phys. 119, 641–645 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Botan, V., Schanz, R. & Hamm, P. The infrared-driven cistrans isomerization of HONO. II: Vibrational relaxation and slow isomerization channel. J. Chem. Phys. 124, 234511–234519 (2006).

    Article  Google Scholar 

  34. 34

    Kössl, F., Lisaj, M., Kozich, V., Heyne, K. & Kühn, O. Monitoring the alcoholysis of isocyanates with infrared spectroscopy. Chem. Phys. Lett. 621, 411–445 (2015).

    Article  Google Scholar 

  35. 35

    Heyne, K., Huse, N., Nibbering, E. T. J. & Elsaesser, T. Ultrafast relaxation and anharmonic coupling of O–H stretching and bending excitations in cyclic acetic acid dimers. Chem. Phys. Lett. 382, 19–25 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Kozich, V., Moguilevski, A. & Heyne, K. High energy femtosecond OPA pumped by 1030nm Yb:KGW laser. Opt. Commun. 285, 4515–4518 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Kaindl, R. A. et al. Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 µm. J. Opt. Soc. Am. B 17, 2086–2094 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K. & Frisch, M. J. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. (Theochem) 461–462, 1–21 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Deutsche Forschungsgemeinschaft (grants nos Ku952/6 and He5206/3, CRC 1078 ‘Protonation Dynamics in Protein Function’, Project B07, CRC 1114 ‘Scaling Cascades in Complex Systems’, Project B05). The authors thank N.P. Ernsting for discussions and the group of S. Reich for Raman microscopy experiments.

Author information

Affiliations

Authors

Contributions

T.S. performed the femtosecond experiments on CH-ol and PHI, analysed the data and contributed to writing the paper. Y.Y. performed the femtosecond experiments on CH-ol and PHI. V.K. performed acceleration measurements, photolithography measurements, analysed the data and contributed to writing the paper. F.K. provided the samples. A.A.A. performed the quantum chemical calculations, analysed their results and contributed to writing the paper. K.H. and O.K. contributed to all measurements, calculations and analysis and wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Karsten Heyne.

Ethics declarations

Competing interests

V.K., F.K. and K.H. are listed as inventors on a patent application describing infrared-light-induced yield optimization of chemical reactions. These patents are pending in the EU (EP2014056220) and the USA (US 2016/0051963). K.H. is also listed on a patent describing a method for polymerizing monomer units and/or oligomer units by means of infrared light pulses. This patent includes US patent no. 1412448 and EU patent no. EP 2718005. The other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3920 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stensitzki, T., Yang, Y., Kozich, V. et al. Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation. Nature Chem 10, 126–131 (2018). https://doi.org/10.1038/nchem.2909

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing