Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions


Prebiotic phosphorylation of (pre)biological substrates under aqueous conditions is a critical step in the origins of life. Previous investigations have had limited success and/or require unique environments that are incompatible with subsequent generation of the corresponding oligomers or higher-order structures. Here, we demonstrate that diamidophosphate (DAP)—a plausible prebiotic agent produced from trimetaphosphate—efficiently (amido)phosphorylates a wide variety of (pre)biological building blocks (nucleosides/tides, amino acids and lipid precursors) under aqueous (solution/paste) conditions, without the need for a condensing agent. Significantly, higher-order structures (oligonucleotides, peptides and liposomes) are formed under the same phosphorylation reaction conditions. This plausible prebiotic phosphorylation process under similar reaction conditions could enable the systems chemistry of the three classes of (pre)biologically relevant molecules and their oligomers, in a single-pot aqueous environment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: DAP-mediated phosphorylation of nucleosides/tides demonstrating the potential to generate and progress through the successive levels of nucleotides and oligonucleotides under similar conditions.
Figure 2: DAP-induced phosphorylation and esterification of glycerol with short-chain fatty acids give rise to simple mimics of phospholipids, leading to formation of protocell-like structures under the same reaction conditions, signifying the single-pot transition of simple building blocks to higher-order self-assemblies.
Figure 3: DAP phosphorylates amino acids in water while activating them towards the formation of oligopeptides in the same reaction setting.


  1. 1

    Lohrmann, R. & Orgel, L. E. Prebiotic synthesis: phosphorylation in aqueous solution. Science 161, 64–66 (1968).

    CAS  PubMed  Google Scholar 

  2. 2

    Schwartz, A. W. Specific phosphorylation of the 2′- and 3′-positions in ribonucleosides. J. Chem. Soc. D 1393a ( 1969).

  3. 3

    Leman, L. J., Orgel, L. E. & Ghadiri, M. R. Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide. J. Am. Chem. Soc. 128, 20–21 (2006).

    CAS  PubMed  Google Scholar 

  4. 4

    Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    CAS  PubMed  Google Scholar 

  5. 5

    Burcar, B. et al. Darwin's warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew. Chem. Int. Ed. 55, 13249–13253 (2016).

    CAS  Google Scholar 

  6. 6

    Kim, H. J. et al. Evaporite borate-containing mineral ensembles make phosphate available and regiospecifically phosphorylate ribonucleosides: borate as a multifaceted problem solver in prebiotic chemistry. Angew. Chem. Int. Ed. 55, 15816–15820 (2016).

    CAS  Google Scholar 

  7. 7

    Pasek, M. A. & Kee, T. P. in Origins of Life: The Primal Self-Organization (eds Egel, R., Lankenau, D.-H. & Mulkidjanian, A. Y.) 57–84 (Springer, 2011).

    Google Scholar 

  8. 8

    Gull, M. Prebiotic phosphorylation reactions on the early Earth. Challenges 5, 193–212 (2014).

    Google Scholar 

  9. 9

    Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    CAS  PubMed  Google Scholar 

  10. 10

    Krishnamurthy, R., Guntha, S. & Eschenmoser, A. Regioselective α-phosphorylation of aldoses in aqueous solution. Angew. Chem. Int. Ed. 39, 2281–2285 (2000).

    CAS  Google Scholar 

  11. 11

    Coggins, A. J. & Powner, M. W. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis. Nat. Chem. 9, 310–317 (2017).

    CAS  PubMed  Google Scholar 

  12. 12

    Meznik, L., Thomas, B. & Töpelmann, W. Zum Reaktionsverhalten von phosphoroxidtriamid in alkalischen lösungen. Zeit. Chemie 22, 211–211 (1982).

    CAS  Google Scholar 

  13. 13

    Richter, S., Töpelmann, W. & Lehmann, H.-A. Zur hydrolyse der phosphorsäureamide. Zeit. Anorg. Allgem. Chemie 424, 133–143 (1976).

    CAS  Google Scholar 

  14. 14

    Bishop, M. J., Lohrmann, R. & Orgel, L. E. Prebiotic phosphorylation of thymidine at 65 °C in simulated desert conditions. Nature 237, 162–164 (1972).

    CAS  PubMed  Google Scholar 

  15. 15

    Lohrmann, R. & Orgel, L. E. Urea–inorganic phosphate mixtures as prebiotic phosphorylating agents. Science 171, 490–494 (1971).

    CAS  PubMed  Google Scholar 

  16. 16

    Schoffstall, A. M. Prebiotic phosphorylation of nucleosides in formamide. Origins Life Evol. Biosph. 7, 399–412 (1976).

    CAS  Google Scholar 

  17. 17

    Cafferty, B. J., Fialho, D. M., Khanam, J., Krishnamurthy, R. & Hud, N. V. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat. Commun. 7, 11328 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Bowler, F. R. et al. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat. Chem. 5, 383–389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Kervio, E., Sosson, M. & Richert, C. The effect of leaving groups on binding and reactivity in enzyme-free copying of DNA and RNA. Nucleic Acids Res. 44, 5504–5514 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Apel, C. L., Deamer, D. W. & Mautner, M. N. Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim. Biophys. Acta 1559, 1–9 (2002).

    CAS  PubMed  Google Scholar 

  21. 21

    Gendaszewska-Darmach, E. & Drzazga, A. Biological relevance of lysophospholipids and green solutions for their synthesis. Curr. Org. Chem. 18, 2928–2949 (2014).

    CAS  Google Scholar 

  22. 22

    Dubois, M. & Zemb, Th . Swelling limits for bilayer microstructures: the implosion of lamellar structure versus ordered lamellae. Curr. Opin. Colloid Interface Sci. 5, 27–37 (2000).

    CAS  Google Scholar 

  23. 23

    Zhu, T. F. & Szostak, J. W. Exploding vesicles. J. Sys. Chem. 2, 4 (2011).

    CAS  Google Scholar 

  24. 24

    Lawless, J. G. & Yuen, G. U. Quantification of monocarboxylic acids in the Murchison carbonaceous meteorite. Nature 282, 396–398 (1979).

    CAS  Google Scholar 

  25. 25

    Szostak, J. W. An optimal degree of physical and chemical heterogeneity for the origin of life? Phil. Trans. R. Soc. Lond. B 366, 2894–2901 (2011).

    CAS  Google Scholar 

  26. 26

    Dhiman, R. S., Opinska, L. G. & Kluger, R. Biomimetic peptide bond formation in water with aminoacyl phosphate esters. Org. Biomol. Chem. 9, 5645–5647 (2011).

    CAS  PubMed  Google Scholar 

  27. 27

    Knowles, J. Enzyme-catalyzed phosphoryl transfer reactions. Ann. Rev. Biochem. 49, 877–919 (1980).

    CAS  PubMed  Google Scholar 

  28. 28

    Lassila, J. K., Zalatan, J. G. & Herschlag, D. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Ann. Rev. Biochem. 80, 669–702 (2011).

    CAS  PubMed  Google Scholar 

  29. 29

    Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2015).

    CAS  PubMed  Google Scholar 

  30. 30

    Griesser, H. et al. Ribonucleotides and RNA promote peptide chain growth. Angew. Chem. Int. Ed. 56, 1219–1223 (2017).

    CAS  Google Scholar 

  31. 31

    Adamala, K. & Szostak, J. W. Competition between model protocells driven by an encapsulated catalyst. Nat. Chem. 5, 495–501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Karki, M., Gibard, C., Bhowmik, S. & Krishnamurthy, R. Nitrogenous derivatives of phosphorus and the origins of life: plausible prebiotic phosphorylating agents in water. Life (Basel). 7, E32 (2017).

    PubMed  Google Scholar 

  33. 33

    Lazcano, A. Complexity, self-organization and the origin of life: the happy liaison? Origins of Life 2009, 13–22 (2009).

    Google Scholar 

  34. 34

    Eschenmoser, A. The TNA-family of nucleic acid systems: properties and prospects. Orig. Life Evol. Biosph. 34, 277–306 (2004).

    CAS  PubMed  Google Scholar 

  35. 35

    Anastasi, C. et al. The search for a potentially prebiotic synthesis of nucleotides via arabinose-3-phosphate and its cyanamide derivative. Chem. Eur. J. 14, 2375–2388 (2008).

    CAS  PubMed  Google Scholar 

  36. 36

    Yamagata, Y., Watanabe, H., Saitoh, M. & Namba, T. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352, 516–519 (1991).

    CAS  PubMed  Google Scholar 

  37. 37

    Feldmann, W. & Thilo, E. Zur chemie der kondensierten Phosphate und Arsenate. XXXVIII. Amidotriphosphat. Zeit. Anorg. Allgem. Chemie. 328, 113–126 (1964).

    CAS  Google Scholar 

  38. 38

    Thilo, E. Zur strukturchemie der kondensierten anorganischen Phosphate. Angew. Chem. 77, 1056–1066 (1965).

    Google Scholar 

  39. 39

    Pasek, M. A. & Lauretta, D. S. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5, 515–535 (2005).

    CAS  PubMed  Google Scholar 

  40. 40

    Bryant, D. E. & Kee, T. P. Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-Phosphinic acid from the Nantan meteorite. Chem. Commun. 2006, 2344–2346 (2006).

    Google Scholar 

  41. 41

    Turner, B. E. & Bally, J. Detection of interstellar PN: the first identified phosphorus compound in the interstellar medium. Astrophys. J. 321, L75–L79 (1987).

    CAS  Google Scholar 

  42. 42

    Ziurys, L. M. Detection of interstellar PN: the first phosphorous-bearing species observed in molecular clouds. Astrophys. J. 321, L81–L85 (1987).

    CAS  PubMed  Google Scholar 

  43. 43

    Rivilla, V. M. et al. The first detections of the key prebiotic molecule PO in star-forming regions. Astrophys. J. 826, 161 (2016).

    Google Scholar 

  44. 44

    Oró, J., Miller, S. L. & Lazcano, A. The origin and early evolution of life on Earth. Annu. Rev. Earth Planetary Sci. 18, 317–356 (1990).

    Google Scholar 

Download references


The work was supported by a grant from the Simons Foundation to R.K. (327124) and NASA (NNX14AP59G). This is manuscript #29523 from The Scripps Research Institute. The authors thank M. Wood, T. Fassel and W.B. Kiosses of the Core Microscope Facility of TSRI, M. Janssen for initial TEM measurements, J. Kelly's laboratory for DLS measurements, L. Leman for help with analysis of peptides and the S.F. Dowdy laboratory for MALDI-TOF analysis. The authors also thank R. Ghadiri, D. Deamer, S. Mansy, P. Banerjee, J. Szostak, G. Joyce and our lab members for discussions.

Author information




R.K. conceived the project. R.K., C.G., S.B., M.K. and E.-K.K. designed the experiments. C.G. and S.B. performed the nucleoside/nucleotide/oligonucleotide phosphorylation experiments. M.K., S.B. and C.G. performed the amino acid phosphorylation experiments. M.K. performed the liposome studies. E.-K.K. and S.B. made the initial observations of DAP-mediated phosphorylation. R.K. wrote the paper with input from C.G., S.B., M.K. and E.-K.K. All authors discussed the results and commented on the manuscript. C.G., S.B. and M.K. contributed equally to this work.

Corresponding author

Correspondence to Ramanarayanan Krishnamurthy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 17468 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gibard, C., Bhowmik, S., Karki, M. et al. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nature Chem 10, 212–217 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing