Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon

Abstract

Molecular solids with cooperative electronic properties based purely on π electrons from carbon atoms offer a fertile ground in the search for exotic states of matter, including unconventional superconductivity and quantum magnetism. The field was ignited by reports of high-temperature superconductivity in materials obtained by the reaction of alkali metals with polyaromatic hydrocarbons, such as phenanthrene and picene, but the composition and structure of any compound in this family remained unknown. Here we isolate the binary caesium salts of phenanthrene, Cs(C14H10) and Cs2(C14H10), to show that they are multiorbital strongly correlated Mott insulators. Whereas Cs2(C14H10) is diamagnetic because of orbital polarization, Cs(C14H10) is a Heisenberg antiferromagnet with a gapped spin-liquid state that emerges from the coupled highly frustrated Δ-chain magnetic topology of the alternating-exchange spiral tubes of S = ½ (C14H10)•− radical anions. The absence of long-range magnetic order down to 1.8 K (T/J ≈ 0.02; J is the dominant exchange constant) renders the compound an excellent candidate for a spin-½ quantum-spin liquid (QSL) that arises purely from carbon π electrons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of pristine phenanthrene and its caesium and dicaesium salts.
Figure 2: Structural and vibrational characterization of caesium phenanthride salts.
Figure 3: Evolution of magnetic properties on the reduction of phenanthrene.
Figure 4: EPR spectroscopy and spin susceptibility of Cs(C14H10).
Figure 5: Electronic band structures of Cs(C14H10) and Cs2(C14H10).
Figure 6: First-principles calculations of the electronic and magnetic interactions in Cs(C14H10).

Similar content being viewed by others

References

  1. Ramirez, A. P. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453–480 (1994).

    Article  CAS  Google Scholar 

  2. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  CAS  Google Scholar 

  3. Imai, T. & Lee, Y. S. Do quantum spin liquids exist? Phys. Today 69, 30–36 (2016).

    Article  Google Scholar 

  4. Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. Evidence for a gapped spin-liquid ground state in a Kagomé Heisenberg antiferromagnet. Science 350, 655–658 (2015).

    Article  CAS  Google Scholar 

  5. Okamoto, Y., Yoshida, H. & Hiroi, Z. Vesignieite BaCu3V2O8(OH)2 as a candidate spin-½ Kagomé antiferromagnet. J. Phys. Soc. Jpn 78, 033701 (2009).

    Article  Google Scholar 

  6. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    Article  CAS  Google Scholar 

  7. Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Spin-liquid state in an organic spin-½ system on a triangular lattice, EtMe3Sb[Pd(dmit)2]2 . J. Phys. Condens. Matter 19, 145247 (2007).

    Article  Google Scholar 

  8. Isono, T. et al. Gapless quantum spin liquid in an organic spin-½ triangular-lattice κ−H3(Cat-EDT-TTF)2 . Phys. Rev. Lett. 112, 177201 (2014).

    Article  Google Scholar 

  9. Saito, G. & Yoshida, Y. Development of conductive organic molecular assemblies: organic metals, superconductors, and exotic functional materials. Bull. Chem. Soc. Jpn 80, 1–137 (2007).

    Article  CAS  Google Scholar 

  10. Takabayashi, Y. et al. The disorder-free non-BCS superconductor Cs3C60 emerges from an antiferromagnetic insulator parent state. Science 323, 1585–1590 (2009).

    Article  CAS  Google Scholar 

  11. Ganin, A. Y. et al. Polymorphism control of superconductivity and magnetism in Cs3C60 close to the Mott transition. Nature 466, 221–225 (2010).

    Article  CAS  Google Scholar 

  12. Zadik, R. H. et al. Optimized unconventional superconductivity in a molecular Jahn–Teller metal. Sci. Adv. 1, e1500059 (2015).

    Article  Google Scholar 

  13. Ganin, A. Y. et al. Bulk superconductivity at 38 K in a molecular system. Nat. Mater. 7, 367–371 (2008).

    Article  CAS  Google Scholar 

  14. Veciana, J. π-Electron Magnetism. From Molecules to Magnetic Materials (Springer, 2001).

    Google Scholar 

  15. Yamaguchi, H. et al. Unconventional magnetic and thermodynamic properties of S = ½ spin ladder with ferromagnetic legs. Phys. Rev. Lett. 110, 157205 (2013).

    Article  CAS  Google Scholar 

  16. Riyadi, S. et al. Antiferromagnetic S = ½ spin chain driven by p-orbital ordering in CsO2 . Phys. Rev. Lett. 108, 217206 (2012).

    Article  Google Scholar 

  17. Klanjšek, M. et al. Phonon-modulated magnetic interactions and spin Tomonaga–Luttinger liquid in the p-orbital antiferromagnet CsO2 . Phys. Rev. Lett. 115, 057205 (2015).

    Article  Google Scholar 

  18. Mitsuhashi, R. et al. Superconductivity in alkali-metal-doped picene. Nature 464, 76–79 (2010).

    Article  CAS  Google Scholar 

  19. Wang, X. F. et al. Superconductivity at 5 K in alkali-metal-doped phenanthrene. Nat. Commun. 2, 507 (2011).

    Article  CAS  Google Scholar 

  20. Xue, M. et al. Superconductivity above 30 K in alkali-metal-doped hydrocarbon. Sci. Rep. 2, 389 (2012).

    Article  Google Scholar 

  21. Kosugi, T. et al. First-principles electronic structure of solid picene. J. Phys. Soc. Jpn 78, 113704 (2009).

    Article  Google Scholar 

  22. de Andres, P. L., Guijarro, A. & Vergés, J. A. Ab initio electronic and geometrical structures of tripotassium-intercalated phenanthrene. Phys. Rev. B 84, 144501 (2011).

    Article  Google Scholar 

  23. Mahns, B., Roth, F. & Knupfer, M. Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron, or correlation physics? J. Chem. Phys. 136, 134503 (2012).

    Article  Google Scholar 

  24. Ruff, A. et al. Absence of metallicity in K-doped picene: importance of electronic correlations. Phys. Rev. Lett. 110, 216403 (2013).

    Article  Google Scholar 

  25. Naghavi, S. S. & Tosatti, E. Crystal structure search and electronic properties of alkali-doped phenanthrene and picene. Phys. Rev. B 90, 075143 (2014).

    Article  Google Scholar 

  26. Heguri, S., Kobayashi, M. & Tanigaki, K. Questioning the existence of superconducting potassium doped phases for aromatic hydrocarbons. Phys. Rev. B 92, 014502 (2015).

    Article  Google Scholar 

  27. Kubo, K. Excited states and the thermodynamics of a fully frustrated quantum spin chain. Phys. Rev. B 48, 10552–10555 (1993).

    Article  CAS  Google Scholar 

  28. Kay, M. I., Okaya, Y. & Cox, D. E. A refinement of the structure of the room temperature phase of phenanthrene, C14H10, from X-ray and neutron diffraction data. Acta Cryst. B 27, 26–33 (1971).

    Article  CAS  Google Scholar 

  29. Kato, T., Yoshizawa, K. & Hirao, K. Electron–phonon coupling in negatively charged acene- and phenanthrene-edge-type hydrocarbon crystals. J. Chem. Phys. 116, 3420–3429 (2002).

    Article  CAS  Google Scholar 

  30. Kuzmany, H., Matus, M., Burger, B. & Winter, J. Raman scattering in C60 fullerenes and fullerides. Adv. Mater. 6, 731–745 (1994).

    Article  CAS  Google Scholar 

  31. Kosaka, M. et al. Superconductivity in LixCsC60 fullerides. Phys. Rev. B 59, R6628–R6630 (1999).

    Article  CAS  Google Scholar 

  32. Johnston, D. C. et al. Thermodynamics of spin S = ½ antiferromagnetic uniform and alternating-exchange Heisenberg chains. Phys. Rev. B 61, 9558–9606 (2000).

    Article  CAS  Google Scholar 

  33. Oshikawa, M. & Affleck, I. Low-temperature electron spin resonance theory for half-integer spin antiferromagnetic chains. Phys. Rev. Lett. 82, 5136–5139 (1999).

    Article  CAS  Google Scholar 

  34. Furuya, S. C. & Sato, M. Electron spin resonance in quasi-one-dimensional quantum antiferro-magnets: relevance of weak interchain interactions. J. Phys. Soc. Jpn 84, 033704 (2015).

    Article  Google Scholar 

  35. Lemmens, P., Güntherodt, G. & Gros, C. Magnetic light scattering in low-dimensional quantum spin systems. Phys. Rep. 375, 1–103 (2003).

    Article  CAS  Google Scholar 

  36. de’ Medici, L., Mravlje, J. & Georges, A. Janus-faced influence of Hund's rule coupling in strongly correlated materials. Phys. Rev. Lett. 107, 256401 (2011).

    Article  Google Scholar 

  37. Nomura, Y., Nakamura, K. & Arita, R. Ab initio derivation of electronic low-energy models for C60 and aromatic compounds. Phys. Rev. B 85, 155452 (2012).

    Article  Google Scholar 

  38. Nomura, Y. et al. Unified understanding of superconductivity and Mott transition in alkali-doped fullerides from first principles. Sci. Adv. 1, e1500568 (2015).

    Article  Google Scholar 

  39. Werner, P. & Millis, A. J. High-spin to low-spin and orbital polarization transitions in multiorbital Mott systems. Phys. Rev. Lett. 99, 126405 (2007).

    Article  Google Scholar 

  40. Smith, J. D. Organometallic compounds of the heavier alkali metals. Adv. Organomet. Chem. 43, 267–348 (1999).

    Article  Google Scholar 

  41. Zabula, A. V. & Petrukhina, M. A. Structural perspective on aggregation of alkali metal ions with charged planar and curved carbon π-surfaces. Adv. Organomet. Chem. 61, 375–462 (2013).

    Article  CAS  Google Scholar 

  42. Romero, F. D. et al. Redox-controlled potassium intercalation into two polyaromatic hydrocarbon solids. Nat. Chem. http://dx.doi.org/10.1038/nchem.2765 (2017).

    Google Scholar 

  43. Aidoudi, F. H. et al. An ionothermally prepared S = ½ vanadium oxyfluoride Kagomé lattice. Nat. Chem. 3, 801–806 (2011).

    Article  CAS  Google Scholar 

  44. Balz, C. et al. Physical realization of a quantum spin liquid based on a complex frustration mechanism. Nat. Phys. 12, 942–949 (2016).

    Article  Google Scholar 

  45. Altomare, A. et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 46, 1231–1235 (2013).

    Article  CAS  Google Scholar 

  46. Larson, A. C. & von Dreele, R. B. General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report No. LAUR 86-748, 2000).

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  48. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  49. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892(R)–7895(R) (1990).

    Article  Google Scholar 

  50. Mostofi, A. A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  CAS  Google Scholar 

  51. Nomura, Y., Sakai, S. & Arita, R. Multiorbital cluster dynamical mean-field theory with an improved continuous-time quantum Monte Carlo algorithm. Phys. Rev. B 89, 195146 (2014).

    Article  Google Scholar 

  52. Bauer, B. et al. The ALPS project release 2.0: open source software for strongly correlated systems. J. Stat. Mech. Theor. Exp. P05001 (2011).

Download references

Acknowledgements

This work was sponsored by the World Premier International (WPI) Research Center Initiative for Atoms, Molecules and Materials, Ministry of Education, Culture, Sports, Science and Technology of Japan. We acknowledge financial support from the Japan Science and Technology Agency under the ERATO Isobe Degenerate π-Integration Project, the Mitsubishi Foundation, the Japan Society for the Promotion of Science (JSPS) under the Scientific Research on Innovative Areas ‘J-Physics’ Project (No. 15H05882), the European Union/JST SICORP-LEMSUPER FP7-NMP-2011-EU-Japan project (contract no. NMP3-SL-2011-283214), the UK Engineering and Physical Sciences Research Council (grant nos EP/K027255 and EP/K027212) and the Slovenian Research Agency (grant no. N1-0052). We thank the ESRF for access to synchrotron X-ray facilities, the Royal Society for a Newton International Fellowship (G.K.) and a Research Professorship (M.J.R.), A. N. Fitch for help with the synchrotron XRD experiments, H. Okazaki with the magnetic measurements and K. Kamarás with the infrared measurements.

Author information

Authors and Affiliations

Authors

Contributions

K.P. and M.J.R. conceived and designed the project. K.P. directed and coordinated the research. Y.T. and M.M. interpreted and discussed all the results and carried out the final structural and magnetic work. H.T., N.T., T.K., Y.N. and R.A. carried out the calculations. A.Š. synthesized the materials. D.A. carried out the EPR spectroscopy and G.K. the vibrational spectroscopic work. A.J.C.B. and A.Š. carried out early structural and magnetic work. K.P. wrote the paper with input from all the authors.

Corresponding authors

Correspondence to Matthew J. Rosseinsky or Kosmas Prassides.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takabayashi, Y., Menelaou, M., Tamura, H. et al. π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon. Nature Chem 9, 635–643 (2017). https://doi.org/10.1038/nchem.2764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing