Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization

Abstract

The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn < 1.3) could be obtained at room temperature in 5 minutes. This polymerization strategy enables chain growth to be initiated directly from chain-transfer agents anchored on the surface of live cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Strategies for engineering cell surfaces using synthetic polymers.
Figure 2: Characterizations of polymer coating and viability of the modified yeast cells.
Figure 3: Polymer cleavage and in situ chain extension confirmed well-defined covalent polymers with preserved chain end formed on the cell surface.
Figure 4: Utility of cell surface-initiated polymerization on yeast cells.
Figure 5: Cell surface-initiated polymerization on Jurkat cells.

References

  1. Wang, B. in Cell Surface Engineering: Fabrication of Functional Nanoshells (eds Fakhrullin, R. F., Choi, I. S. & Lvov, Y.) 4–27 (The Royal Society of Chemistry, 2014).

    Google Scholar 

  2. Ebara, M. in Chemistry of Bioconjugates: Synthesis, Characterization, and Biomedical Applications (ed. Narain, R.) 357–368 (John Wiley & Sons, 2014).

    Google Scholar 

  3. Fakhrullin, R. F., Zamaleeva, A. I., Minullina, R. T., Konnova, S. A. & Paunov, V. N. Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chem. Soc. Rev. 41, 4189–4206 (2012).

    CAS  PubMed  Google Scholar 

  4. Stephan, M. T. & Irvine, D. J. Enhancing cell therapies from the outside in: cell surface engineering using synthetic nanomaterials. Nano Today 6, 309–325 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, S. H. et al. Mussel-inspired encapsulation and functionalization of individual yeast cells. J. Am. Chem. Soc. 133, 2795–2797 (2011).

    CAS  PubMed  Google Scholar 

  6. Boonyarattanakalin, S. et al. A synthetic mimic of human Fc receptors : defined chemical modification of cell surfaces enables efficient endocytic uptake of human immunoglobulin-G. J. Am. Chem. Soc. 128, 11463–11470 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferguson, M. A. J. & Williams, A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Ann. Rev. Biochem. 57, 285–320 (1988).

    CAS  PubMed  Google Scholar 

  9. George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. Specific labeling of cell surface proteins with chemically diverse compounds. J. Am. Chem. Soc. 126, 8896–8897 (2004).

    CAS  PubMed  Google Scholar 

  10. Wilson, J. T., Krishnamurthy, V. R., Cui, W., Qu, Z. & Chaikof, E. L. Noncovalent cell surface engineering with cationic graft copolymers. J. Am. Chem. Soc. 131, 18228–18229 (2009).

    CAS  PubMed  Google Scholar 

  11. Teramura, Y. & Iwata, H. Cell surface modification with polymers for biomedical studies. Soft Matter 6, 1081–1091 (2010).

    CAS  Google Scholar 

  12. Rossi, N. A. A., Constantinescu, I., Brooks, D. E., Scott, M. D. & Kizhakkedathu, J. N. Enhanced cell surface polymer grafting in concentrated and nonreactive aqueous polymer solutions. J. Am. Chem. Soc. 132, 3423–3430 (2010).

    CAS  PubMed  Google Scholar 

  13. Wilson, J. T. et al. Cell surface engineering with polyelectrolyte multilayer thin films. J. Am. Chem. Soc. 133, 7054–7064 (2011).

    CAS  PubMed  Google Scholar 

  14. Xu, X., Wang, B. & Tang, R. Hybrid materials that integrate living cells: improved eco-adaptation and environmental applications. ChemSusChem 4, 1439–1446 (2011).

    CAS  PubMed  Google Scholar 

  15. Akashi, M. M. in Cell Surface Engineering: Fabrication of Functional Nanoshells (eds Fakhrullin, R. F., Choi, I. S. & Lvov, Y.) 216–239 (The Royal Society of Chemistry, 2014).

    Google Scholar 

  16. Teramura, Y., Kaneda, Y. & Iwata, H. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane. Biomaterials 28, 4818–4825 (2007).

    CAS  PubMed  Google Scholar 

  17. Teramura, Y., Kaneda, Y., Totani, T. & Iwata, H. Behavior of synthetic polymers immobilized on a cell membrane. Biomaterials 29, 1345–1355 (2008).

    CAS  PubMed  Google Scholar 

  18. Totani, T., Teramura, Y. & Iwata, H. Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials 29, 2878–2883 (2008).

    CAS  PubMed  Google Scholar 

  19. Wilson, J. T. & Chaikof, E. L. in Micro- and Nanoengineering of the Cell Surface (eds Karp, J. M. & Zhao, W.) 281–314 (Elsevier, 2014).

    Google Scholar 

  20. Shih, H. & Lin, C.-C. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol. Rapid Commun. 34, 269–273 (2013).

    CAS  PubMed  Google Scholar 

  21. Bahney, C. S. et al. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur. Cell Mater. 22, 43–55 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lilly, J. L., Romero, G., Xu, W., Shin, H. Y. & Berron, B. J. Characterization of molecular transport in ultrathin hydrogel coatings for cellular immunoprotection. Biomacromolecules 16, 541–549 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Magennis, E. P. et al. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nat. Mater. 13, 748–755 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cobo, I., Li, M., Sumerlin, B. S. & Perrier, S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat. Mater. 14, 143–159 (2014).

    PubMed  Google Scholar 

  25. Le Droumaguet, B. & Nicolas, J. Recent advances in the design of bioconjugates from controlled/living radical polymerization. Poly. Chem. 1, 563–598 (2010).

    CAS  Google Scholar 

  26. Xu, J., Jung, K., Atme, A., Shanmugam, S. & Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 136, 5508–5519 (2014).

    CAS  PubMed  Google Scholar 

  27. Xu, J., Jung, K., Corrigan, N. A. & Boyer, C. Aqueous photoinduced living/controlled polymerization: tailoring for bioconjugation. Chem. Sci. 5, 3568–3575 (2014).

    CAS  Google Scholar 

  28. Kizhakkedathu, J. N., Janzen, J., Le, Y., Kainthan, R. K. & Brooks, D. E. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Langmuir 25, 3794–3801 (2009).

    CAS  PubMed  Google Scholar 

  29. Yoshikawa, C. et al. Fabrication of high-density polymer brush on polymer substrate by surface-initiated living radical polymerization. Macromolecules 38, 4604–4610 (2005).

    CAS  Google Scholar 

  30. Ayres, N. Polymer brushes: applications in biomaterials and nanotechnology. Polym. Chem. 1, 769–777 (2010).

    CAS  Google Scholar 

  31. Olivier, A., Meyer, F., Raquez, J. M., Damman, P. & Dubois, P. Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: from self-assembled monolayers to patterned surfaces. Prog. Polym. Sci. 37, 157–181 (2012).

    CAS  Google Scholar 

  32. Krishnamoorthy, M., Hakobyan, S., Ramstedt, M. & Gautrot, J. E. Surface-initiated polymer brushes in the biomedical field : applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem. Rev. 114, 10976–11026 (2014).

    CAS  PubMed  Google Scholar 

  33. Seabrook, S., Tonge, M. P. & Gilbert, R. G. Pulsed laser polymerization study of the propagation kinetics of acrylamide in water. J. Polym. Sci. A Polym. Chem. 43, 1357–1368 (2005).

    CAS  Google Scholar 

  34. Lacík, I . et al. PLP-SEC studies into the propagation rate coefficient of acrylamide radical polymerization in aqueous solution. Macromolecules 49, 3244–3253 (2016).

    Google Scholar 

  35. Chua, G. B. H., Roth, P. J., Duong, H. T. T., Davis, T. P. & Lowe, A. B. Synthesis and thermoresponsive solution properties of poly[oligo(ethylene glycol) (meth)acrylamide]s: biocompatible PEG analogues. Macromolecules 45, 1362–1374 (2012).

    CAS  Google Scholar 

  36. Du, Y., Lo, E., Ali, S. & Khademhosseini, A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl Acad. Sci. USA 105, 9522–9527 (2008).

    CAS  PubMed  Google Scholar 

  37. Xu, J., Shanmugam, S., Duong, H. T. & Boyer, C. Organo-photocatalysts for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization. Polym. Chem. 6, 5615–5624 (2015).

    CAS  Google Scholar 

  38. Bryant, S. J., Nuttelman, C. R. & Anseth, K. S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2012).

    Google Scholar 

  39. Chiefari, J. et al. Living free-radical polymerization by reversible addition—fragmentation chain transfer the RAFT process. Macromolecules 31, 5559–5562 (1998).

    CAS  Google Scholar 

  40. Shi, Y., Gao, H., Lu, L. & Cai, Y . Ultra-fast RAFT polymerisation of poly(ethylene glycol) acrylate in aqueous media under mild visible light radiation at 25 °C. Chem. Commun. 1368–1370 (2009).

  41. Jewett, J. C., Sletten, E. M. & Bertozzi, C. R. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc. 132, 3688–3690 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).

    CAS  PubMed  Google Scholar 

  43. Rowe-Konopacki, M. D. & Boyes, S. G. Synthesis of surface initiated diblock copolymer brushes from flat silicon substrates utilizing the RAFT polymerization technique. Macromolecules 40, 879–888 (2007).

    CAS  Google Scholar 

  44. Zammarelli, N., Luksin, M., Raschke, H., Hergenröder, R. & Weberskirch, R. ‘Grafting-from’ polymerization of PMMA from stainless steel surfaces by a raft-mediated polymerization process. Langmuir 29, 12834–12843 (2013).

    CAS  PubMed  Google Scholar 

  45. Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem. 3, 146–153 (2011).

    PubMed  PubMed Central  Google Scholar 

  46. Sen, M. Y. & Puskas, J. E. Green polymer chemistry: telechelic poly(ethylene glycol)s via enzymatic catalysis. J. Polym. Sci. A 45, 4300–4308 (2007).

    Google Scholar 

  47. Ladmiral, V., Legge, T. M., Zhao, Y. & Perrier, S. ‘Click’ chemistry and radical polymerization: potential loss of orthogonality. Macromolecules 41, 6728–6732 (2008).

    CAS  Google Scholar 

  48. Hong, D. et al. Organic/inorganic double-layered shells for multiple cytoprotection of individual living cells. Chem. Sci. 6, 203–208 (2015).

    CAS  PubMed  Google Scholar 

  49. Lesage, G. & Bussey, H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317–343 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cabib, E., Roh, D.-H., Schmidt, M., Crotti, L. B. & Varma, A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem. 276, 19679–19682 (2001).

    CAS  PubMed  Google Scholar 

  51. Lamport, D. T. A. Cell wall metabolism. Annu. Rev. Plant Physiol. 21, 235–270 (1970).

    CAS  Google Scholar 

  52. O'Malley, M. A., Lazarova, T., Britton, Z. T. & Robinson, A. S. High-level expression in Saccharomyces cerevisiae enables isolation and spectroscopic characterization of functional human adenosine A2a receptor. J. Struc. Biol. 159, 166–178 (2007).

    CAS  Google Scholar 

  53. Kim, B. S., Lee, H. I., Min, Y., Poon, Z. & Hammond, P. T . Hydrogen-bonded multilayer of pH-responsive polymeric micelles with tannic acid for surface drug delivery. Chem. Commun. 4194–4196 (2009).

  54. Kim, K. et al. TAPE: A medical adhesive inspired by a ubiquitous compound in plants. Adv. Func. Mater. 25, 2402–2410 (2015).

    CAS  Google Scholar 

  55. Kozlovskaya, V. et al. Hydrogen-bonded LbL shells for living cell surface engineering. Soft Matter 7, 2364 (2011).

    CAS  Google Scholar 

  56. Selden, N. S. et al. Chemically programmed cell adhesion with membrane-anchored oligonucleotides. J. Am. Chem. Soc. 134, 765–768 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of DARPA (N66001-14-2-4055), the Institute for Collaborative Biotechnologies through grants W911NF-09-0001 and W911QY-15-C-0026 from the US Army Research Office and the Garland Initiative. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. We acknowledge the support of UCSB Biological Nanostructures Laboratory and NRI-MCDB confocal microscopy facility (supported by NIH grant S10OD010610-01A1). We gratefully acknowledge W. Gutekunst, C. Haitjema, R. Behrens, J. Smith, L. Dassau and M. Raven for experimental assistance and helpful discussions. D.J.L. is grateful to the European Union for a Marie Curie Global Postdoctoral Fellowship. J.I.Y. acknowledges support from the NSF Graduate Research Fellowship. S.M. acknowledges support from Duncan and Mellichamp Chair and Cluster in Systems Biology and Bioengineering.

Author information

Authors and Affiliations

Authors

Contributions

J.N., C.J.H. and H.T.S. conceived the idea and J.N. designed and performed the experiments. D.J.L. synthesized the lipidomimetic CTA compound. A.P. cultured Jurkat cells and conducted the related characterizations. J.I.Y. conducted the GPCR+ yeast culturing and related characterizations. C.J.H., H.T.S., M.A.O. and S.M. supervised the study. All authors analysed the data and co-wrote the manuscript.

Corresponding authors

Correspondence to H. Tom Soh or Craig J. Hawker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1536 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Lunn, D., Pusuluri, A. et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nature Chem 9, 537–545 (2017). https://doi.org/10.1038/nchem.2713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2713

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing