Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interplay between defects, disorder and flexibility in metal-organic frameworks

Abstract

Metal-organic frameworks are a novel family of chemically diverse materials, which are of interest across engineering, physics, chemistry, biology and medicine-based disciplines. Since the development of the field in its current form more than two decades ago, priority has been placed on the synthesis of new structures. However, more recently, a clear trend has emerged in shifting the emphasis from material design to exploring the chemical and physical properties of structures already known. In particular, although such nanoporous materials were traditionally seen as rigid crystalline structures, there is growing evidence that large-scale flexibility, the presence of defects and long-range disorder are not the exception in metal-organic frameworks, but the rule. Here we offer some perspective into how these concepts are perhaps inescapably intertwined, highlight recent advances in our understanding and discuss how a consideration of the interfaces between them may lead to enhancements of the materials' functionalities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Flexibility, defects and disorder in metal-organic frameworks.
Figure 2: Interplay between defects and flexibility in metal-organic frameworks.
Figure 3: The relationships between flexibility and disorder in metal-organic frameworks.
Figure 4: Coupling between defects and disorder in metal-organic frameworks.

References

  1. Schneermann, A. et al. Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    Article  Google Scholar 

  2. Dubbeldam, D., Walton, K. S., Ellis, D. E. & Snurr, R. Q. Exceptional negative thermal expansion in isoreticular metal-organic frameworks. Angew. Chem. Int. Ed. 46, 4496–4499 (2007).

    Article  CAS  Google Scholar 

  3. McKellar, S. C. & Moggach, S. A. Structural studies of metal-organic frameworks under high pressure. Acta Cryst. B 71, 587–607 (2015).

    Article  CAS  Google Scholar 

  4. Li, W. et al. Negative linear compressibility of a metal-organic framework. J. Am. Chem. Soc. 134, 11940–11943 (2012).

    Article  CAS  Google Scholar 

  5. Cairns, A. B. et al. Giant negative linear compressibility in zinc dicyanoaurate. Nat. Mater. 12, 212–216 (2013).

    Article  CAS  Google Scholar 

  6. Kaye, S. S., Dailly, A., Yaghi, O. M. & Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129, 14176–14177 (2007).

    Article  CAS  Google Scholar 

  7. Cooper, A. I. & Rosseinsky, M. J. Metal-organic frameworks improving pore performance. Nat. Chem. 1, 26–27 (2009).

    Article  CAS  Google Scholar 

  8. Fang, Z. L., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal-organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    Article  CAS  Google Scholar 

  9. Li, L. et al. A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nat. Commun. 4, 1774 (2013).

    Article  CAS  Google Scholar 

  10. Sholl, D. S. & Lively, R. P. Defects in metal-organic frameworks: challenge or opportunity? J. Phys. Chem. Lett. 6, 3437–3444 (2015).

    Article  CAS  Google Scholar 

  11. Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4, 4′, 4′′, 4′′′-tetracyanotetraphenylmethane]BF4·xC6H5NO2 . J. Am. Chem. Soc. 112, 1546–1554 (1990).

    Article  CAS  Google Scholar 

  12. Bennett, T. D. et al. Hybrid glasses from strong and fragile metal-organic framework liquids. Nat. Commun. 6, 8079 (2015).

    Article  CAS  Google Scholar 

  13. Cairns, A. B. & Goodwin, A. L. Structural disorder in molecular framework materials. Chem. Soc. Rev. 42, 4881–4893 (2013).

    Article  CAS  Google Scholar 

  14. Ohrstrom, L. Let's talk about MOFs — topology and terminology of metal-organic frameworks and why we need them. Crystals 5, 154–162 (2015).

    Article  Google Scholar 

  15. Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem.-Eur. J. 10, 1373–1382 (2004).

    Article  CAS  Google Scholar 

  16. Bennett, T. D. et al. Melt-quenched glasses of metal-organic frameworks. J. Am. Chem. Soc. 138, 3484–3492 (2016).

    Article  CAS  Google Scholar 

  17. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  18. Wu, H., Yildirim, T. & Zhou, W. Exceptional mechanical stability of highly porous zirconium metal-organic framework UiO-66 and its important implications. J. Phys. Chem. Lett. 4, 925–930 (2013).

    Article  CAS  Google Scholar 

  19. Valenzano, L. et al. Disclosing the complex structure of UiO-66 metal-organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011).

    Article  CAS  Google Scholar 

  20. Wu, H. et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 135, 10525–10532 (2013).

    Article  CAS  Google Scholar 

  21. Vermoortele, F. et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). J. Am. Chem. Soc. 135, 11465–11468 (2013).

    Article  CAS  Google Scholar 

  22. Thornton, A. W., Babarao, R., Jain, A., Trousselet, F. & Coudert, F.-X. Defects in metal-organic frameworks: a compromise between adsorption and stability? Dalton Trans. 45, 4352–4359 (2016).

    Article  CAS  Google Scholar 

  23. Deng, H. X. et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846–850 (2010).

    Article  CAS  Google Scholar 

  24. Fukushima, T. et al. Solid solutions of soft porous coordination polymers: fine-tuning of gas adsorption properties. Angew. Chem. Int. Ed. 49, 4820–4824 (2010).

    Article  CAS  Google Scholar 

  25. Kleist, W., Jutz, F., Maciejewski, M. & Baiker, A. Mixed-linker metal-organic frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2 . Eur. J. Inorg. Chem. 24, 3552–3561 (2009).

    Article  Google Scholar 

  26. Cohen, S. M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev. 112, 970–1000 (2012).

    Article  CAS  Google Scholar 

  27. Karagiaridi, O. et al. Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J. Am. Chem. Soc. 134, 18790–18796 (2012).

    Article  CAS  Google Scholar 

  28. Deria, P. et al. Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. Chem. Soc. Rev. 43, 5896–5912 (2014).

    Article  CAS  Google Scholar 

  29. Karagiaridi, O., Bury, W., Mondloch, J. E., Hupp, J. T. & Farha, O. K. Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem. Int. Ed. 53, 4530–4540 (2014).

    Article  CAS  Google Scholar 

  30. Bouëssel du Bourg, L., Ortiz, A. U., Boutin, A. & Coudert, F.-X. Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs. APL Mater. 2, 124110 (2014).

    Article  Google Scholar 

  31. Zhang, Z. Y., Li, W., Carpenter, M. A., Howard, C. J. & Cheetham, A. K. Elastic properties and acoustic dissipation associated with a disorder–order ferroelectric transition in a metal-organic framework. CrystEngComm 17, 370–374 (2015).

    Article  CAS  Google Scholar 

  32. Hobday, C. L. et al. A computational and experimental approach linking disorder, high-pressure behavior, and mechanical properties in UiO frameworks. Angew. Chem. Int. Ed. 55, 2401–2405 (2016).

    Article  CAS  Google Scholar 

  33. Kitagawa, S. & Kondo, M. Functional micropore chemistry of crystalline metal complex-assembled compounds. Bull. Chem. Soc. Jpn. 71, 1739–1753 (1998).

    Article  CAS  Google Scholar 

  34. Tan, J. C. et al. Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework. Phys. Rev. Lett. 108, 095502 (2012).

    Article  Google Scholar 

  35. Cook, T. R., Zheng, Y. R. & Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 113, 734–777 (2013).

    Article  CAS  Google Scholar 

  36. Tsuruoka, T. et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem. Int. Ed. 48, 4739–4743 (2009).

    Article  CAS  Google Scholar 

  37. Xiang, S. et al. Porous organic–inorganic hybrid aerogels based on Cr3+/Fe3+ and rigid bridging carboxylates. J. Mater. Chem. 22, 1862–1867 (2012).

    Article  CAS  Google Scholar 

  38. Lohe, M. R., Rose, M. & Kaskel, S. Metal-organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 6056–6058 (2009).

  39. Umeyama, D., Horike, S., Inukai, M., Itakura, T. & Kitagawa, S. Reversible Solid-to-liquid phase transition of coordination polymer crystals. J. Am. Chem. Soc. 137, 864–870 (2015).

    Article  CAS  Google Scholar 

  40. Umeyama, D. et al. Glass formation via structural fragmentation of a 2D coordination network. Chem. Commun. 51, 12728–12731 (2015).

    Article  CAS  Google Scholar 

  41. Zhao, Y., Lee, S.-Y., Becknell, N., Yaghi, O. M. & Angell, C. A. Nanoporous transparent MOF glasses with accessible internal surface. J. Am. Chem. Soc. 138, 10818–10821 (2016).

    Article  CAS  Google Scholar 

  42. Shelby, J. E. Introduction to Glass Science and Technology 2nd edn (Royal Society of Chemistry, 2005).

    Google Scholar 

  43. Kato, H. & Kasuga, T. Preparation of proton-conducting hybrid materials by reacting zinc phosphate glass with benzimidazole. Mater. Lett. 79, 109–111 (2012).

    Article  CAS  Google Scholar 

  44. Kim, J. & Honma, I. Anhydrous solid state proton conductor based on benzimidazole/monododecyl phosphate molecular hybrids. Solid State Ionics 176, 979–984 (2005).

    Article  CAS  Google Scholar 

  45. Chen, W. Q. et al. Glass formation of a coordination polymer crystal for enhanced proton conductivity and material flexibility. Angew. Chem. Int. Ed. 55, 5195–5200 (2016).

    Article  CAS  Google Scholar 

  46. Wang, L. J. et al. Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53, 5881–5883 (2014).

    Article  CAS  Google Scholar 

  47. Leclerc, H. et al. Influence of the oxidation state of the metal center on the flexibility and adsorption properties of a porous metal organic framework: MIL-47(V). J. Phys. Chem. C 115, 19828–19840 (2011).

    Article  CAS  Google Scholar 

  48. Cliffe, M. J. et al. Correlated defect nanoregions in a metal-organic framework. Nature Commun. 5, 4176 (2014).

    Article  CAS  Google Scholar 

  49. Taylor, J. M., Dekura, S., Ikeda, R. & Kitagawa, H. Defect control to enhance proton conductivity in a metal-organic framework. Chem. Mater. 27, 2286–2289 (2015).

    Article  CAS  Google Scholar 

  50. Tominaka, S. et al. Topochemical conversion of a dense metal-organic framework from a crystalline insulator to an amorphous semiconductor. Chem. Sci. 6, 1465–1473 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge CECAM and CNRS for funding the Workshop on Flexibility and Disorder in Metal-Organic Frameworks (Paris, 3–5 June 2015), which spurred discussion of these topics. TDB acknowledges Trinity Hall (University of Cambridge) for funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors initiated this discussion and designed the paper, T.D.B. and F.-X.C. wrote the manuscript, all authors revised it.

Corresponding authors

Correspondence to Thomas D. Bennett or François-Xavier Coudert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bennett, T., Cheetham, A., Fuchs, A. et al. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nature Chem 9, 11–16 (2017). https://doi.org/10.1038/nchem.2691

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2691

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing