Self-propelled supramolecular nanomotors with temperature-responsive speed regulation

Abstract

Self-propelled catalytic micro- and nanomotors have been the subject of intense study over the past few years, but it remains a continuing challenge to build in an effective speed-regulation mechanism. Movement of these motors is generally fully dependent on the concentration of accessible fuel, with propulsive movement only ceasing when the fuel consumption is complete. Here we report a demonstration of control over the movement of self-assembled stomatocyte nanomotors via a molecularly built, stimulus-responsive regulatory mechanism. A temperature-sensitive polymer brush is chemically grown onto the nanomotor, whereby the opening of the stomatocytes is enlarged or narrowed on temperature change, which thus controls the access of hydrogen peroxide fuel and, in turn, regulates movement. To the best of our knowledge, this represents the first nanosized chemically driven motor for which motion can be reversibly controlled by a thermally responsive valve/brake. We envision that such artificial responsive nanosystems could have potential applications in controllable cargo transportation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Design of polymeric stomatocyte nanomotors with thermosensitive brakes.
Figure 2: Characterization of the stoma, stoma–Br, PtNP–stoma and PtNP–stoma–brush.
Figure 3: Diffusion NMR measurements of free PNIPAM and stomatocytes with grown brushes (stoma–brush) in MeOD.
Figure 4: Evaluation of the functioning of PNIPAM brushes on stomatocytes.
Figure 5: Motion evaluation of PtNP–stoma–brush and PtNP–stoma.

References

  1. 1

    Sengupta, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Li, J. et al. Nanomotor lithography. Nat. Commun. 5, 5026 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Wang, J. Nanomachines: Fundamentals and Applications (John Wiley & Sons, 2013).

    Google Scholar 

  4. 4

    Guix, M., Mayorga-Martinez, C. C. & Merkoci, A. Nano/micromotors in (bio)chemical science applications. Chem. Rev. 114, 6285–6322 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Wang, J. & Gao, W. Nano/microscale motors: biomedical opportunities and challenges. ACS Nano 6, 5745–5751 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Abdelmohsen, L. K. E. A., Peng, F., Tu, Y. & Wilson, D. A. Micro- and nano-motors for biomedical applications. J. Mater. Chem. B 2, 2395–2408 (2014).

    Article  CAS  Google Scholar 

  7. 7

    Sengupta, S., Ibele, M. E. & Sen, A. Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51, 8434–8445 (2012).

    Article  CAS  Google Scholar 

  8. 8

    Peng, F., Tu, Y., van Hest, J. C. M. & Wilson, D. A. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew. Chem. Int. Ed. 127, 11828–11831 (2015).

    Article  Google Scholar 

  9. 9

    Tu, Y. et al. Mimicking the cell: bio-inspired functions of supramolecular assemblies. Chem. Rev. 116, 2023–2078 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Ismagilov, R. F., Schwartz, A., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angew. Chem. Int. Ed. 114, 674–676 (2002).

    Article  Google Scholar 

  11. 11

    Mei, Y. et al. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20, 4085–4090 (2008).

    Article  CAS  Google Scholar 

  12. 12

    Sánchez, S. et al. in Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications (eds Paprotny, I. & Bergbreiter, S.) 16–27 (Springer, 2014).

    Google Scholar 

  13. 13

    Gao, W., Sattayasamitsathit, S., Orozco, J. & Wang, J. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 133, 11862–11864 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Soler, L., Magdanz, V., Fomin, V. M., Sanchez, S. & Schmidt, O. G. Self-propelled micromotors for cleaning polluted water. ACS Nano 7, 9611–9620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Zhang, L. et al. Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano 4, 6228–6234 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Gao, W., Sattayasamitsathit, S., Manesh, K. M., Weihs, D. & Wang, J. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132, 14403–14405 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Zhang, L. et al. Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 064107 (2009).

    Article  CAS  Google Scholar 

  18. 18

    Zhang, L. et al. Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 9, 3663–3667 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Wang, W., Castro, L. A., Hoyos, M. & Mallouk, T. E. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6, 6122–6132 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Wang, W. et al. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Int. Ed. 53, 3201–3204 (2014).

    Article  CAS  Google Scholar 

  21. 21

    Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Pavlick, R. A., Sengupta, S., McFadden, T., Zhang, H. & Sen, A. A polymerization-powered motor. Angew. Chem. Int. Ed. 123, 9546–9549 (2011).

    Article  Google Scholar 

  23. 23

    Baraban, L. et al. Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6, 3383–3389 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Ma, X. et al. Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15, 7043–7050 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Wilson, D. A., Nolte, R. J. & van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Wu, Y., Wu, Z., Lin, X., He, Q. & Li, J. Autonomous movement of controllable assembled Janus capsule motors. ACS Nano 6, 10910–10916 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Abdelmohsen, L. K. et al. Dynamic loading and unloading of proteins in polymeric stomatocytes: formation of enzyme-loaded supramolecular nanomotor. ACS Nano 10, 2652–2660 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 117, 754–756 (2005).

    Article  Google Scholar 

  29. 29

    Ma, X., Hahn, K. & Sanchez, S. Catalytic mesoporous Janus nanomotors for active cargo delivery. J. Am. Chem. Soc. 137, 4976–4979 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Sanchez, S., Solovev, A. A., Mei, Y. & Schmidt, O. G. Dynamics of biocatalytic microengines mediated by variable friction control. J. Am. Chem. Soc. 132, 13144–13145 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Laocharoensuk, R., Burdick, J. & Wang, J. Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano 2, 1069–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Baylis, J. R. et al. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage. Sci. Adv. 1, e1500379 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Gao, W., Uygun, A. & Wang, J. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J. Am. Chem. Soc. 134, 897–900 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Gao, W., Pei, A. & Wang, J. Water-driven micromotors. ACS Nano 6, 8432–8438 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Pantarotto, D., Browne, W. R. & Feringa, B. L. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. http:dx.doi/org/10.1039/b715310d (2008).

  36. 36

    Tottori, S. et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Sing, C. E., Schmid, L., Schneider, M. F., Franke, T. & Alexander-Katz, A. Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc. Natl Acad. Sci. USA 107, 535–540 (2010).

    Article  PubMed  Google Scholar 

  38. 38

    Garcia-Gradilla, V. et al. Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7, 9232–9240 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Chang, S. T., Paunov, V. N., Petsev, D. N. & Velev, O. D. Remotely powered self-propelling particles and micropumps based on miniature diodes. Nat. Mater. 6, 235–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Loget, G. & Kuhn, A. Electric field-induced chemical locomotion of conducting objects. Nat. Commun. 2, 535 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Ibele, M., Mallouk, T. E. & Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48, 3308–3312 (2009).

    Article  CAS  Google Scholar 

  42. 42

    Ichimura, K., Oh, S.-K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Hong, Y., Diaz, M., Córdova-Figueroa, U. M. & Sen, A. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv. Funct. Mater. 20, 1568–1576 (2010).

    Article  CAS  Google Scholar 

  44. 44

    Magdanz, V., Sanchez, S. & Schmidt, O. G. Development of a sperm-flagella driven micro-bio-robot. Adv. Mater. 25, 6581–6588 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Mirkovic, T., Zacharia, N. S., Scholes, G. D. & Ozin, G. A. Fuel for thought: chemically powered nanomotors out-swim nature's flagellated bacteria. ACS Nano 4, 1782–1789 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Balasubramanian, S. et al. Thermal modulation of nanomotor movement. Small 5, 1569–1574 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Magdanz, V., Stoychev, G., Ionov, L., Sanchez, S. & Schmidt, O. Stimuli-responsive microjets with reconfigurable shape. Angew. Chem. Int. Ed. 53, 2673–2677 (2014).

    Article  CAS  Google Scholar 

  48. 48

    Wu, Z. et al. Near-infrared light-triggered ‘on/off’ motion of polymer multilayer rockets. ACS Nano 8, 6097–6105 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Ma, X., Wang, X., Hahn, K. & Sánchez, S. Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597–3605 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F. & Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991).

    CAS  PubMed  Google Scholar 

  52. 52

    Chen, T., Ferris, R., Zhang, J., Ducker, R. & Zauscher, S. Stimulus-responsive polymer brushes on surfaces: transduction mechanisms and applications. Prog. Polym. Sci. 35, 94–112 (2010).

    Article  CAS  Google Scholar 

  53. 53

    Zhang, X. et al. Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater. 23, 4067–4078 (2013).

    Article  CAS  Google Scholar 

  54. 54

    Sui, X. et al. Stability and cell adhesion properties of poly(N-isopropylacrylamide) brushes with variable grafting densities. Aust. J. Chem. 64, 1261–1268 (2011).

    Article  CAS  Google Scholar 

  55. 55

    Liu, H. et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 135, 7603–7609 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Barbey, R. et al. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem. Rev. 109, 5437–5527 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Schild, H. G. Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 17, 163–249 (1992).

    Article  CAS  Google Scholar 

  59. 59

    Shi, S. et al. Poly(N-isopropylacrylamide)–Au hybrid microgels: synthesis, characterization, thermally tunable optical and catalytic properties. Soft Matter 9, 10966–10970 (2013).

    Article  CAS  Google Scholar 

  60. 60

    Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Wilson, D. A., Nijs, B., Blaaderen, A., Nolte, R. J. & van Hest, J. C. M. Fuel concentration dependent movement of supramolecular catalytic nanomotors. Nanoscale 5, 1315–1318 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Wang, S. & Wu, N. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis. Langmuir 30, 3477–3486 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-20012)/ERC-StG 307679 ‘StomaMotors’. We acknowledge support from the Ministry of Education, Culture and Science (Gravitation program 024.001.035). F.P. acknowledges funding from the China Scholarship Council. G.-J. Janssen and the General Instruments Department are acknowledged for providing support for the cryo-TEM and EDX measurements.

Author information

Affiliations

Authors

Contributions

Y. T. and D.A.W. conceived and designed the experiments. Y.T., F.P., X.S., Y.M. and P.B.W. performed the experiments. Y.T. analysed the data and prepared the manuscript. All authors discussed the results and contributed to the final form of the manuscript.

Corresponding author

Correspondence to Daniela A. Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9982 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tu, Y., Peng, F., Sui, X. et al. Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nature Chem 9, 480–486 (2017). https://doi.org/10.1038/nchem.2674

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing