Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic control of chirality and self-assembly of double-stranded helicates with light


Helicity switching in biological and artificial systems is a fundamental process that allows for the dynamic control of structures and their functions. In contrast to chemical approaches to responsive behaviour in helicates, the use of light as an external stimulus offers unique opportunities to invert the chirality of helical structures in a non-invasive manner with high spatiotemporal precision. Here, we report that unidirectional rotary motors with connecting oligobipyridyl ligands, which can dynamically change their chirality upon irradiation, assemble into metal helicates that are responsive to light. The motor function controls the self-assembly process as well as the helical chirality, allowing switching between oligomers and double-stranded helicates with distinct handedness. The unidirectionality of the light-induced motion governs the sequence of programmable steps, enabling the highly regulated self-assembly of fully responsive helical structures. This discovery paves the way for the future development of new chirality-dependent photoresponsive systems including smart materials, enantioselective catalysts and light-driven molecular machines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic representation of the design and concept of the dynamic double-stranded helicates.
Figure 2: 1H NMR spectra of (P,P)-trans-L1, (M,M)-cis-L1, (P,P)-cis-L1 and the corresponding Cu(I) complexes.
Figure 3: 1H NMR spectra of (P,P)-trans-L2, (M,M)-cis-L2, (P,P)-cis-L2 and the corresponding Cu(I) complexes.
Figure 4: Determination of the absolute configuration of L2-Cu2.
Figure 5: Programmed dynamic assembly processes of L1-Cu and L2-Cu2 induced by light and heat.


  1. 1

    Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS  Article  Google Scholar 

  2. 2

    Kemp, M. The Mona Lisa of modern science. Nature 421, 416–420 (2003).

    Article  Google Scholar 

  3. 3

    Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA 37, 205–211 (1951).

    CAS  Article  Google Scholar 

  4. 4

    Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (Wiley-VCH, 1995).

    Google Scholar 

  5. 5

    Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotech. 6, 763–772 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Lindoy, L. F. & Atkinson, I. M. Self-Assembly in Supramolecular Systems Ch. 6 (Royal Society of Chemistry, 2000).

    Google Scholar 

  7. 7

    Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Koert, U., Harding, M. M. & Lehn, J.-M. DNH deoxyribonucleohelicates: self assembly of oligonucleosidic double-helical metal complexes. Nature 346, 339–342 (1990).

    CAS  Article  Google Scholar 

  9. 9

    Patterson, S. D. & Aebersold, R. H. Proteomics: the first decade and beyond. Nat. Genet. 33, 311–323 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Oh, K., Jeong, K.-S. & Moore, J. S. Folding-driven synthesis of oligomers. Nature 414, 889–893 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Zhang, D.-W., Zhao, X., Hou, J.-L. & Li, Z.-T. Aromatic amide foldamers: structures, properties, and functions. Chem. Rev. 112, 5271–5316 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163–163 (2006).

    CAS  Article  Google Scholar 

  13. 13

    de Jong, J. J. D., Lucas, L. N., Kellogg, R. M., van Esch, J. H. & Feringa, B. L. Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304, 278–281 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Hill, J. P. et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481–1483 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Howson, S. E. et al. Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity. Nat. Chem. 4, 31–36 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Brown, R. A., Diemer, V., Webb, S. J. & Clayden, J. End-to-end conformational communication through a synthetic purinergic receptor by ligand-induced helicity switching. Nat. Chem. 5, 853–860 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Ousaka, N., Takeyama, Y., Iida, H. & Yashima, E. Chiral information harvesting in dendritic metallopeptides. Nat. Chem. 3, 856–861 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Byrne, L. et al. Foldamer-mediated remote stereocontrol: >1,60 asymmetric induction. Angew. Chem. Int. Ed. 53, 151–155 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Hua, Y. & Flood, A. H. Flipping the switch on chloride concentrations with a light-active foldamer. J. Am. Chem. Soc. 132, 12838–12840 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Suk, J.-M., Naidu, V. R., Liu, X., Lah, M. S. & Jeong, K.-S. A foldamer-based chiroptical molecular switch that displays complete inversion of the helical sense upon anion binding. J. Am. Chem. Soc. 133, 13938–13941 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Chandramouli, N. et al. Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose. Nat. Chem. 7, 334–341 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Song, G. & Ren, J. Recognition and regulation of unique nucleic acid structures by small molecules. Chem. Commun. 46, 7283–7294 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Zhao, D., Neubauer, T. M. & Feringa, B. L. Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat. Commun. 6, 6652 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Maxein, G. & Zentel, R. Photochemical inversion of the helical twist sense in chiral polyisocyanates. Macromolecules 28, 8438–8440 (1995).

    CAS  Article  Google Scholar 

  28. 28

    Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed. 46, 3693–3696 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Feringa, B. L. & Browne, W. R. Molecular Switches 2nd edn (Wiley-VCH, 2011).

    Google Scholar 

  30. 30

    Lehn, J. M. et al. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix. Proc. Natl Acad. Sci. USA 84, 2565–2569 (1987).

    CAS  Article  Google Scholar 

  31. 31

    Kramer, R., Lehn, J. M. & Marquis-Rigault, A. Self-recognition in helicate self-assembly: spontaneous formation of helical metal complexes from mixtures of ligands and metal ions. Proc. Natl Acad. Sci. USA 90, 5394–5398 (1993).

    CAS  Article  Google Scholar 

  32. 32

    Albrecht, M . ‘Let's twist again’—double-stranded, triple-stranded, and circular helicates. Chem. Rev. 101, 3457–3498 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Boiocchi, M. & Fabbrizzi, L. Double-stranded dimetallic helicates: assembling–disassembling driven by the CuI/CuII redox change and the principle of homochiral recognition. Chem. Soc. Rev. 43, 1835–1847 (2014).

    CAS  Article  Google Scholar 

  34. 34

    Miyake, H. & Tsukube, H. Coordination chemistry strategies for dynamic helicates: time-programmable chirality switching with labile and inert metal helicates. Chem. Soc. Rev. 41, 6977–6991 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Miwa, K., Furusho, Y. & Yashima, E. Ion-triggered spring-like motion of a double helicate accompanied by anisotropic twisting. Nat. Chem. 2, 444–449 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Albrecht, M., Isaak, E., Moha, V., Raabe, G. & Fröhlich, R. Stereocontrol in dinuclear triple lithium-bridged titanium(IV) complexes: solving some stereochemical mysteries. Chem. Eur. J. 20, 6650–6658 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Zarges, W., Hall, J., Lehn, J.-M. & Bolm, C. Helicity induction in helicate self-organisation from chiral tris(bipyridine) ligand strands. Helv. Chim. Acta. 74, 1843–1852 (1991).

    CAS  Article  Google Scholar 

  38. 38

    Albrecht, M. et al. ‘Induced fit’ in chiral recognition: epimerization upon dimerization in the hierarchical self-assembly of helicate-type titanium(IV) complexes. Angew. Chem. Int. Ed. 50, 2850–2853 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Woods, C. R., Benaglia, M., Siegel, J. S. & Cozzi, F. Enantioselective synthesis of copper(I) bipyridine based helicates by chiral templating of secondary structure: transmission of stereochemistry on the nanometer scale. Angew. Chem. Int. Ed. 35, 1830–1833 (1996).

    CAS  Article  Google Scholar 

  40. 40

    Goto, H., Furusho, Y. & Yashima, E. Double helical oligoresorcinols specifically recognize oligosaccharides via heteroduplex formation through noncovalent interactions in water. J. Am. Chem. Soc. 129, 9168–9174 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Shimomura, K., Ikai, T., Kanoh, S., Yashima, E. & Maeda, K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat. Chem. 6, 429–434 (2014).

    CAS  Article  Google Scholar 

  42. 42

    Clayden, J., Lund, A., Vallverdu, L. & Helliwell, M. Ultra-remote stereocontrol by conformational communication of information along a carbon chain. Nature 431, 966–971 (2004).

    CAS  Article  Google Scholar 

  43. 43

    van Dijken, D. J. et al. Autoamplification of molecular chirality through the induction of supramolecular chirality. Angew. Chem. Int. Ed. 53, 5073–5077 (2014).

    CAS  Google Scholar 

  44. 44

    Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Allouche, L., Marquis, A. & Lehn, J.-M. Discrimination of metallosupramolecular architectures in solution by using diffusion ordered spectroscopy (DOSY) experiments: double-stranded helicates of different lengths. Chem. Eur. J. 12, 7520–7525 (2006).

    CAS  Article  Google Scholar 

  46. 46

    Yan, X. et al. Photoinduced transformations of stiff-stilbene-based discrete metallacycles to metallosupramolecular polymers. Proc. Natl Acad. Sci. USA 111, 8717–8722 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Baum, G., Constable, E. C., Fenske, D., Housecroft, C. E. & Kulke, T. Stereoselective double-helicate assembly from chiral 2,2′:6′,2″:6″,2‴-quaterpyridines and tetrahedral metal centres. Chem. Eur. J. 5, 1862–1873 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Furusho, Y. et al. Synthesis and optical resolution of a Cu(I) double-stranded helicate with ketimine-bridged tris(bipyridine) ligands. Chem. Commun. 47, 9795–9797 (2011).

    CAS  Article  Google Scholar 

  49. 49

    Yeung, H.-L., Sham, K.-C., Wong, W.-Y., Wong, C.-Y. & Kwong, H.-L. Helical complexes of chiral quaterpyridines—mononuclear CuII and dinuclear CuI complexes. Eur. J. Inorg. Chem. 2011, 5112–5124 (2011).

    CAS  Article  Google Scholar 

  50. 50

    Lemus, L. et al. Resolution and characterization of helicate dimer and trimer complexes of 1,3-bis(9-methyl-1,10-phenanthrolin-2-yl)propane with copper(I). Dalton Trans. 42, 11426–11435 (2013).

    CAS  Article  Google Scholar 

Download references


This work was supported financially by the European Research Council (Advanced Investigator Grant no. 227897 to B.L.F.), the Netherlands Organization for Scientific Research (NWO-CW), the Ministry of Education, Culture and Science (Gravitation Program 024.001.035), the Royal Netherlands Academy of Arts and Sciences (KNAW) and NRSC-Catalysis. The authors thank W.R. Browne for discussions. Dedicated to Jean-Marie Lehn on the occasion of the 50th anniversary of his Laboratory.

Author information




D.Z. and B.L.F. conceived the project. D.Z. designed, synthesized and tested the compounds. T.v.L. synthesized L1. J.C. carried out the DFT modelling. B.L.F. guided the research. B.L.F. and D.Z. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3376 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., van Leeuwen, T., Cheng, J. et al. Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nature Chem 9, 250–256 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing