Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic undocking and the quasi-bound state as tools for drug discovery

Abstract

There is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein–ligand complexes, which is notoriously difficult. We adopt an alternative approach that evaluates structural, rather than thermodynamic, stability. As bioactive molecules present a static binding mode, we devised dynamic undocking (DUck), a fast computational method to calculate the work necessary to reach a quasi-bound state at which the ligand has just broken the most important native contact with the receptor. This non-equilibrium property is surprisingly effective in virtual screening because true ligands form more-resilient interactions than decoys. Notably, DUck is orthogonal to docking and other ‘thermodynamic’ methods. We demonstrate the potential of the docking–undocking combination in a fragment screening against the molecular chaperone and oncology target Hsp90, for which we obtain novel chemotypes and a hit rate that approaches 40%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculation of WQB.
Figure 2: Application of the quasi-bound approximation to ligand ranking.
Figure 3: Additional analyses of the prospective application of DUck in Hsp90.
Figure 4: Experimental (grey) and predicted (orange) binding modes of the fragment hits.

Similar content being viewed by others

References

  1. Kuhnert, M. et al. Tracing binding modes in hit-to-lead optimization: chameleon-like poses of aspartic protease inhibitors. Angew. Chem. Int. Ed. 54, 2849–2853 (2015).

    Article  CAS  Google Scholar 

  2. Krohn, A., Redshaw, S., Ritchie, J. C., Graves, B. J. & Hatada, M. H. Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere. J. Med. Chem. 34, 3340–3342 (1991).

    Article  CAS  Google Scholar 

  3. Smith, L. J., Van Gunsteren, W. F. & Allison, J. R. Multiple binding modes for palmitate to barley lipid transfer protein facilitated by the presence of proline 12. Protein Sci. 22, 56–64 (2013).

    Article  CAS  Google Scholar 

  4. Bissantz, C., Kuhn, B. & Stahl, M. A medicinal chemist's guide to molecular interactions. J. Med. Chem. 53, 5061–5084 (2010).

    Article  CAS  Google Scholar 

  5. Klebe, G. Applying thermodynamic profiling in lead finding and optimization. Nat. Rev. Drug Discov. 14, 95–110 (2015).

    Article  CAS  Google Scholar 

  6. Ferenczy, G. G. & Keserű, G. M. Thermodynamics of fragment binding. J. Chem. Inf. Model. 52, 1039–1045 (2012).

    Article  CAS  Google Scholar 

  7. Kozakov, D. et al. Ligand deconstruction: why some fragment binding positions are conserved and others are not. Proc. Natl Acad. Sci. USA 112, E2585–E2594 (2015).

    Article  CAS  Google Scholar 

  8. Schmidtke, P., Luque, F. J., Murray, J. B. & Barril, X. Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. J. Am. Chem. Soc. 133, 18903–18910 (2011).

    Article  CAS  Google Scholar 

  9. Colizzi, F., Perozzo, R., Scapozza, L., Recanatini, M. & Cavalli, A. Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. J. Am. Chem. Soc. 132, 7361–7371 (2010).

    Article  CAS  Google Scholar 

  10. Noble, M. E. M., Endicott, J. A. & Johnson, L. N. Protein kinase inhibitors: insights into drug design from structure. Science 303, 1800–1805 (2004).

    Article  CAS  Google Scholar 

  11. Anderson, D. R. et al. Benzothiophene inhibitors of MK2. Part 1: structure–activity relationships, assessments of selectivity and cellular potency. Bioorg. Med. Chem. Lett. 19, 4878–4881 (2009).

    Article  CAS  Google Scholar 

  12. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).

    Article  CAS  Google Scholar 

  13. Ember, S. W. J. et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem. Biol. 9, 1160–1171 (2014).

    Article  CAS  Google Scholar 

  14. Mysinger, M. M., Carchia, M., Irwin, J. J. & Shoichet, B. K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55, 6582–6594 (2012).

    Article  CAS  Google Scholar 

  15. Rask-Andersen, M., Almén, M. S. & Schiöth, H. B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 (2011).

    Article  CAS  Google Scholar 

  16. Shoichet, B. K. Virtual screening of chemical libraries. Nature 432, 862–865 (2004).

    Article  CAS  Google Scholar 

  17. Brooijmans, N. & Kuntz, I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32, 335–373 (2003).

    Article  CAS  Google Scholar 

  18. Ruiz-Carmona, S. et al. rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput. Biol. 10, e1003571 (2014).

    Article  Google Scholar 

  19. Roughley, S., Wright, L., Brough, P., Massey, A. & Hubbard, R. E. Hsp90 inhibitors and drugs from fragment and virtual screening. Top. Curr. Chem. 317, 61–82 (2012).

    Article  CAS  Google Scholar 

  20. Hajduk, P. J. & Greer, J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat. Rev. Drug Discov. 6, 211–219 (2007).

    Article  CAS  Google Scholar 

  21. Joseph-McCarthy, D., Campbell, A. J., Kern, G. & Moustakas, D. Fragment-based lead discovery and design. J. Chem. Inf. Model. 54, 693–704 (2014).

    Article  CAS  Google Scholar 

  22. Chen, I.-J. & Hubbard, R. E. Lessons for fragment library design: analysis of output from multiple screening campaigns. J. Comput. Aided Mol. Des. 23, 603–620 (2009).

    Article  Google Scholar 

  23. Teotico, D. G. et al. Docking for fragment inhibitors of AmpC β-lactamase. Proc. Natl Acad. Sci. USA 106, 7455–7460 (2009).

    Article  CAS  Google Scholar 

  24. Murray, C. W. et al. Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J. Med. Chem. 53, 5942–5955 (2010).

    Article  CAS  Google Scholar 

  25. Chipot, C. & Pohorille, A. Free Energy Calculations: Theory and Applications in Chemistry and Biology (Springer, 2007).

    Book  Google Scholar 

  26. Alvarez-Garcia, D. & Barril, X. Molecular simulations with solvent competition quantify water displaceability and provide accurate interaction maps of protein binding sites. J. Med. Chem. 57, 8530–8539 (2014).

    Article  CAS  Google Scholar 

  27. Molecular Operating Environment (MOE), 2014.09 (Chemical Computing Group Inc., 2015).

  28. Jakalian, A., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623–1641 (2002).

    Article  CAS  Google Scholar 

  29. Bayly, C. I., McKay, D. & Truchon, J. F. An Informal AMBER Small Molecule Force Field: parm@Frosst (Computational Chemistry Ltd, 2011).

  30. Case, D. A. et al. AMBER 12 (Amber Software, 2012).

  31. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).

    Article  CAS  Google Scholar 

  32. Brough, P. A. et al. Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J. Med. Chem. 52, 4794–4809 (2009).

    Article  CAS  Google Scholar 

  33. Baurin, N. et al. Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J. Chem. Inf. Comput. Sci. 44, 2157–2166 (2004).

    Article  CAS  Google Scholar 

  34. Davis, B. in Protein-Ligand Interactions: Methods and Applications, Vol. 1008 (eds Williams, M. A. & Daviter, T.) 389–413 (Springer, 2013).

    Book  Google Scholar 

  35. Wright, L. et al. Structure–activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem. Biol. 11, 775–785 (2004).

    Article  CAS  Google Scholar 

  36. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  37. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  38. Emsley, P. & Cowtan, K. COOT: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  Google Scholar 

  39. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

Download references

Acknowledgements

We thank C. Galdeano for helpful discussions and manuscript revision. We thank the Barcelona Supercomputing Center for access to computational resources. This work was financed by the Spanish Ministerio de Economia (SAF2012-33481, SAF2015-68749-R), the Catalan government (2014 SGR 1189) and the ICREA Academia program (F.J.L.).

Author information

Authors and Affiliations

Authors

Contributions

F.J.L., R.H. and X.B. conceived the overall strategy of the study. P.S. and X.B. conceived and implemented the DUck approach. S.R.C. and X.B. carried out and analysed all the computational work. B.D. performed NMR experiments. L.B. performed X-ray crystallography experiments. N.M. performed SPR experiments. All the authors discussed the results, designed experiments and wrote the paper.

Corresponding author

Correspondence to Xavier Barril.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 13482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Carmona, S., Schmidtke, P., Luque, F. et al. Dynamic undocking and the quasi-bound state as tools for drug discovery. Nature Chem 9, 201–206 (2017). https://doi.org/10.1038/nchem.2660

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2660

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing