Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

By-design enantioselective self-amplification based on non-covalent product–catalyst interactions

Abstract

The synthesis of enantiomerically pure compounds is of great importance in pharmaceuticals, fragrances and biological applications, and functions as a key to many processes in nature. Asymmetric catalysis using enantiomerically pure catalysts represents an efficient synthetic method to achieve this goal. The enantiomeric excess of the reaction product correlates with the enantiomeric purity of the catalysts, except for nonlinear behaviour, therefore the use of stereochemically flexible catalysts seems to complicate the control of stereoselectivity. Self-amplifying catalytic reactions are attractive, but a general rational design is highly challenging. Here we show that product interaction with chiral recognition sites attached to structurally flexible phoshoramidite-type catalysts can sense the chirality and induce enantioselectivity in the catalyst. Structural flexibility along with sensing of the chirality of the product molecules results in a rapid increase of enantioselectivity of the dynamic catalysts (Δe.e. of up to 76%) and a shift out of equilibrium. In contrast to stereodynamic catalysts controlled with cleavable chiral auxiliaries, the enantioselectivity does not decrease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the key steps of enantioselective self-amplifying catalysis.
Figure 2: Non-covalent binding model, design of the structurally flexible ligand and the catalysis product, and synthesis of the ligand and catalysts.
Figure 3: Investigation of the non-covalent interactions of 4 and 5 with 10 equiv. 7, (R)-8 or (S)-8 and 20 equiv. rac-8 in solution via 13C{1H} and 31P{1H} NMR spectroscopy.
Figure 4: Investigation of the influence of non-covalent interaction additives on the enantioselectivity of catalyst 6.
Figure 5: Enantioselectivity of rhodium catalyst 6 in the hydrogenation of 3,5-DNB-ΔAla-OEt (7).
Figure 6: Hydrogenations of dehydroamino acid derivatives with non-covalent binding sites.

Similar content being viewed by others

References

  1. Satyanarayana, T., Abraham, S. & Kagan, H. B. Nonlinear effects in asymmetric catalysis. Angew. Chem. Int. Ed. 48, 456–494 (2009).

    Article  CAS  Google Scholar 

  2. Wynberg, H. & Feringa, B. Enantiomeric recognition and interactions. Tetrahedron 32, 2831–2834 (1976).

    Article  CAS  Google Scholar 

  3. Feringa, B. & Wynberg, H. A stereospecific phenol coupling reaction. J. Am. Chem. Soc. 98, 3372–3373 (1976).

    Article  CAS  Google Scholar 

  4. Todd, M. H. Asymmetric autocatalysis: product recruitment for the increase in the chiral environment (PRICE). Chem. Soc. Rev. 31, 211–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Mikami, K. & Yamanaka, M. Symmetry breaking in asymmetric catalysis: racemic catalysis to autocatalysis. Chem. Rev. 103, 3369–3400 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Faller, J. W., Lavoie, A. R. & Parr, J. Chiral poisoning and asymmetric activation. Chem. Rev. 103, 3345–3368 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Walsh, P. J., Lurain, A. E. & Balsells, J. Use of achiral and meso ligands to convey asymmetry in enantioselective catalysis. Chem. Rev. 103, 3297–3344 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Aikawa, K. & Mikami, K. Asymmetric catalysis based on tropos ligands. Chem. Commun. 48, 11050–11069 (2012).

    Article  CAS  Google Scholar 

  9. Mikami, K. & Matsukawa, S. Asymmetric synthesis by enantiomer-selective activation of racemic catalysts. Nature 385, 613–615 (1997).

    Article  CAS  Google Scholar 

  10. Puchot, C. et al. Nonlinear effects in asymmetric synthesis. Examples in asymmetric oxidations and aldolization reactions. J. Am. Chem. Soc. 108, 2353–2357 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Girard, C. & Kagan, H. B. Nonlinear effects in asymmetric synthesis and stereoselective reactions: ten years of investigation. Angew. Chem. Int. Ed. 37, 2922–2959 (1998).

    Article  Google Scholar 

  12. Noyori, R. & Kitamura, M. Enantioselective addition of organometallic reagents to carbonyl compounds: chirality transfer, multiplication, and amplification. Angew. Chem. Int. Ed. 30, 49–69 (1991).

    Article  Google Scholar 

  13. Kitamura, M., Okada, S., Suga, S. & Noyori, R. Enantioselective addition of dialkylzincs to aldehydes promoted by chiral amino alcohols. Mechanism and nonlinear effect. J. Am. Chem. Soc. 111, 4028–4036 (1989).

    Article  CAS  Google Scholar 

  14. Alberts, A. H. & Wynberg, H. The role of the product in asymmetric carbon–carbon bond formation: stoichiometric and catalytic enantioselective autoinduction. J. Am. Chem. Soc. 111, 7265–7266 (1989).

    Article  CAS  Google Scholar 

  15. Rebiere, F., Riant, O. & Kagan, H. B. Asymmetric Diels–Alder reaction catalysed by some chiral Lewis acids. Tetrahedron: Asymmetry 1, 199–214 (1990).

    Article  CAS  Google Scholar 

  16. Heller, D. P., Goldberg, D. R. & Wulff, W. D. Positive cooperativity of product mimics in the asymmetric autoinduction of Diels−Alder reactions catalyzed by a VAPOL−aluminum catalyst. J. Am. Chem. Soc. 119, 10551–10552 (1997).

    Article  CAS  Google Scholar 

  17. Imma, H., Mori, M. & Nakai, T. Asymmetric catalytic hydrosilylation of ketones with triethoxysilane using a chiral binaphthol–titanium complex. Synlett 1996, 1229–1230 (1996).

    Article  Google Scholar 

  18. Shvo, Y., Gal, M., Becker, Y. & Elgavi, A. Asymmetric hydrocyanation of aldehydes with cyclo-dipeptides: a new mechanistic approach. Tetrahedron: Asymmetry 7, 911–924 (1996).

    Article  CAS  Google Scholar 

  19. Danda, H., Nishikawa, H. & Otaka, K. Enantioselective autoinduction in the asymmetric hydrocyanation of 3-phenoxybenzaldehyde catalyzed by cyclo[(R)-phenylalanyl-(R)-histidyl]. J. Org. Chem. 56, 6740–6741 (1991).

    Article  CAS  Google Scholar 

  20. Soai, K., Hayase, T., Shimada, C. & Isobe, K. Catalytic asymmetric synthesis of chiral diol, bis[2-(1-hydroxyalkyl)-phenyl]ether, an asymmetric autocatalytic reaction. Tetrahedron: Asymmetry 5, 789–792 (1994).

    Article  CAS  Google Scholar 

  21. Soai, K., Hayase, T. & Takai, K. Catalytic chirally self-replicating molecule. Asymmetric autocatalytic reaction of a zinc alkoxide of chiral 1-ferrocenyl-2-methylpropan-1-ol. Tetrahedron: Asymmetry 6, 637–638 (1995).

    Article  CAS  Google Scholar 

  22. Shibata, T., Choji, K., Hayase, T., Aizu, Y. & Soai, K. Asymmetric autocatalytic reaction of 3-quinolylalkanol with amplification of enantiomeric excess. Chem. Commun. 10, 1235–1236 (1996).

    Article  Google Scholar 

  23. Shibata, T., Choji, K., Morioka, H., Hayase, T. & Soai, K. Highly enantioselective synthesis of a chiral 3-quinolylalkanol by an asymmetric autocatalytic reaction. Chem. Commun. 6, 751–752 (1996).

    Article  Google Scholar 

  24. Soai, K., Hori, H. & Kawahara, M. Nonlinear relationship between the enantioselectivities for asymmetric reactions of monofunctional and bifunctional substrates. Synthesis of practically optically pure diols by the catalytic enantioselective diethylation of terephthalaldehyde. J. Chem. Soc. Chem. Commun. 106–108 (1992).

  25. Soai, K., Hirose, Y. & Ohno, Y. Chiral dialkyl thiophosphoramidates as highly enantioselective catalysts for the alkylation of aldehydes. Tetrahedron: Asymmetry 4, 1473–1474 (1993).

    Article  CAS  Google Scholar 

  26. Mukaiyama, T., Soai, K., Sato, T., Shimizu, H. & Suzuki, K. Enantioface-differentiating (asymmetric) addition of alkyllithium and dialkylmagnesium to aldehydes by using (2S,2′S)-2-hydroxymethyl-1-[(1-alkylpyrrolidin-2-yl)methyl]pyrrolidines as chiral ligands. J. Am. Chem. Soc. 101, 1455–1460 (1979).

    Article  CAS  Google Scholar 

  27. Oguni, N., Matsuda, Y. & Kaneko, T. Asymmetric amplifying phenomena in enantioselective addition of diethylzinc to benzaldehyde. J. Am. Chem. Soc. 110, 7877–7878 (1988).

    Article  CAS  Google Scholar 

  28. Soai, K., Niwa, S. & Hori, H. Asymmetric self-catalytic reaction. Self-production of chiral 1-(3-pyridyl)alkanols as chiral self-catalysts in the enantioselective addition of dialkylzinc reagents to pyridine-3-carbaldehyde. J. Chem. Soc. Chem. Commun. 14, 982–983 (1990).

    Article  Google Scholar 

  29. Soai, K., Shibata, T., Morioka, H. & Choji, K. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378, 767–768 (1995).

    Article  CAS  Google Scholar 

  30. Soai, K., Kawasaki, T. & Matsumoto, A. Asymmetric autocatalysis of pyrimidyl alkanol and its application to the study on the origin of homochirality. Acc. Chem. Res. 47, 3643–3654 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Blackmond, D. G., McMillan, C. R., Ramdeehul, S., Schorm, A. & Brown, J. M. Origins of asymmetric amplification in autocatalytic alkylzinc additions. J. Am. Chem. Soc. 123, 10103–10104 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Gridnev, I. D., Serafimov, J. M. & Brown, J. M. Solution structure and reagent binding of the zinc alkoxide catalyst in the Soai asymmetric autocatalytic reaction. Angew. Chem. Int. Ed. 43, 4884–4887 (2004).

    Article  CAS  Google Scholar 

  33. Klankermayer, J., Gridnev, I. D. & Brown, J. M. Role of the isopropyl group in asymmetric autocatalytic zinc alkylations. Chem. Commun. 30, 3151–3153 (2007).

    Article  CAS  Google Scholar 

  34. Buono, F. G. & Blackmond, D. G. Kinetic evidence for a tetrameric transition state in the asymmetric autocatalytic alkylation of pyrimidyl aldehydes. J. Am. Chem. Soc. 125, 8978–8979 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Schiaffino, L. & Ercolani, G. Unraveling the mechanism of the Soai asymmetric autocatalytic reaction by first-principles calculations: induction and amplification of chirality by self-assembly of hexamolecular complexes. Angew. Chem. Int. Ed. 47, 6832–6835 (2008).

    Article  CAS  Google Scholar 

  36. Quaranta, M., Gehring, T., Odell, B., Brown, J. M. & Blackmond, D. G. Unusual inverse temperature dependence on reaction rate in the asymmetric autocatalytic alkylation of pyrimidyl aldehydes. J. Am. Chem. Soc. 132, 15104–15107 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Blackmond, D. G. Asymmetric autocatalysis and its implications for the origin of homochirality. Proc. Natl Acad. Sci. USA 101, 5732–5736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Storch, G. & Trapp, O. Temperature-controlled bidirectional enantioselectivity in a dynamic catalyst for asymmetric hydrogenation. Angew. Chem. Int. Ed. 54, 3580–3586 (2015).

    Article  CAS  Google Scholar 

  39. Zahn, S. & Canary, J. W. Electron-induced inversion of helical chirality in copper complexes of N,N-dialkylmethionines. Science 288, 1404–1407 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Gostl, R., Senf, A. & Hecht, S. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chem. Soc. Rev. 43, 1982–1996 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Davie, E. A. C., Mennen, S. M., Xu, Y. & Miller, S. J. Asymmetric catalysis mediated by synthetic peptides. Chem. Rev. 107, 5759–5812 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Barrett, K. T., Metrano, A. J., Rablen, P. R. & Miller, S. J. Spontaneous transfer of chirality in an atropisomerically enriched two-axis system. Nature 509, 71–75 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wieland, J. & Breit, B. A combinatorial approach to the identification of self-assembled ligands for rhodium-catalysed asymmetric hydrogenation. Nat. Chem. 2, 832–837 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Pirkle, W. H. & Murray, P. G. Chiral stationary phase design: use of intercalative effects to enhance enantioselectivity. J. Chromatogr. A 641, 11–19 (1993).

    Article  CAS  Google Scholar 

  47. Pirkle, W. H., Murray, P. G., Rausch, D. J. & McKenna, S. T. Intermolecular 1H−1H two-dimensional nuclear Overhauser enhancements in the characterization of a rationally designed chiral recognition system. J. Org. Chem. 61, 4769–4774 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Pirkle, W. H., Murray, P. G. & Wilson, S. R. X-ray crystallographic evidence in support of a proposed chiral recognition mechanism. J. Org. Chem. 61, 4775–4777 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Pirkle, W. H., Murray, P. G. & Burke, J. A. Use of homologous series of analytes as mechanistic probes to investigate the origins of enantioselectivity on two chiral stationary phases. J. Chromatogr. A 641, 21–29 (1993).

    Article  CAS  Google Scholar 

  50. Pirkle, W. H. & Murray, P. G. Observations relevant to the differential intercalation of enantiomers between the strands of brush-type chiral stationary phases. J. Chromatogr. A 719, 299–305 (1996).

    Article  CAS  Google Scholar 

  51. Maier, F. & Trapp, O. Effects of the stationary phase and the solvent on the stereodynamics of BIPHEP ligands quantified by dynamic three-column HPLC. Angew. Chem. Int. Ed. 51, 2985–2988 (2012).

    Article  CAS  Google Scholar 

  52. Alexakis, A. et al. Novel biphenol phosphoramidite ligands for the enantioselective copper-catalyzed conjugate addition of dialkyl zincs. Synlett 2001, 1375–1378 (2001).

    Article  Google Scholar 

  53. Alexakis, A., Polet, D., Rosset, S. & March, S. Biphenol-based phosphoramidite ligands for the enantioselective copper-catalyzed conjugate addition of diethylzinc. J. Org. Chem. 69, 5660–5667 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Monti, C., Gennari, C. & Piarulli, U. Rh-catalyzed enantioselective conjugate addition of arylboronic acids with a dynamic library of chiral tropos phosphorus ligands. Chem. Eur. J. 13, 1547–1558 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Minnaard, A. J., Feringa, B. L., Lefort, L. & de Vries, J. G. Asymmetric hydrogenation using monodentate phosphoramidite ligands. Acc. Chem. Res. 40, 1267–1277 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Giacomina, F. et al. High enantioselectivity is induced by a single monodentate phosphoramidite ligand in iridium-catalyzed asymmetric hydrogenation. Angew. Chem. Int. Ed. 46, 1497–1500 (2007).

    Article  CAS  Google Scholar 

  57. Bernsmann, H. et al. Pipphos and MorfPhos: privileged monodentate phosphoramidite ligands for rhodium-catalyzed asymmetric hydrogenation. J. Org. Chem. 70, 943–951 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Crociani, B., Antonaroli, S., Di Vona, M. L. & Licoccia, S. Conformational flexibility and molecular dynamics of cationic diolefin–rhodium(I) complexes with iminophosphine ligands. J. Organomet. Chem. 631, 117–124 (2001).

    Article  CAS  Google Scholar 

  60. Alberico, E. et al. Unravelling the reaction path of rhodium–MonoPhos-catalysed olefin hydrogenation. Chem. Eur. J. 17, 12683–12695 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. van den Berg, M. et al. Monodentate phosphoramidites: a breakthrough in rhodium-catalysed asymmetric hydrogenation of olefins. Adv. Synth. Catal. 345, 308–323 (2003).

    Article  CAS  Google Scholar 

  62. Baumann, W., Mansel, S., Heller, D. & Borns, S. Gas bubbles in the NMR tube: an easy way to investigate reactions with gases in the liquid phase. Magn. Reson. Chem. 35, 701–706 (1997).

    Article  CAS  Google Scholar 

  63. Drexler, H.-J., Baumann, W., Spannenberg, A., Fischer, C. & Heller, D. Part III. COD versus NBD precatalysts. Dramatic difference in the asymmetric hydrogenation of prochiral olefins with five-membered diphosphine Rh-hydrogenation catalysts. J. Organomet. Chem. 621, 89–102 (2001).

    Article  CAS  Google Scholar 

  64. Meißner, A ., Alberico, E., Drexler, H.-J., Baumann, W. & Heller, D. Rhodium diphosphine complexes: a case study for catalyst activation and deactivation. Catal. Sci. Technol. 4, 3409–3425 (2014).

    Article  Google Scholar 

  65. Preetz, A. et al. Rhodium-complex-catalyzed asymmetric hydrogenation: transformation of precatalysts into active species. Chem. Eur. J. 14, 1445–1451 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Ojima, I., Kogure, T. & Yoda, N. Asymmetric hydrogenation of prochiral olefins catalyzed by rhodium complexes with chiral pyrrolidinodiphosphines. Crucial factors for the effective asymmetric induction. J. Org. Chem. 45, 4728–4739 (1980).

    Article  CAS  Google Scholar 

  67. Jerphagnon, T., Renaud, J.-L. & Bruneau, C. Chiral monodentate phosphorus ligands for rhodium-catalyzed asymmetric hydrogenation. Tetrahedron: Asymmetry 15, 2101–2111 (2004).

    Article  CAS  Google Scholar 

  68. Fu, Y. et al. Rhodium-catalyzed asymmetric hydrogenation of functionalized olefins using monodentate spiro phosphoramidite ligands. J. Org. Chem. 69, 4648–4655 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. van den Berg, M. et al. Highly enantioselective rhodium-catalyzed hydrogenation with monodentate ligands. J. Am. Chem. Soc. 122, 11539–11540 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Generous financial support by the European Research Council for a Starting Grant (no. 258740, AMPCAT) is gratefully acknowledged. G.S. acknowledges the Fonds der Chemischen Industrie for a PhD fellowship. We thank. F. Rominger (Institut für Organische Chemie, Ruprecht-Karls-Universität Heidelberg) for X-ray crystallographic investigations.

Author information

Authors and Affiliations

Authors

Contributions

G.S. synthesized and characterized the compounds and performed catalytic investigations. O.T. and G.S. conceived and designed the experiments, analysed data and prepared the manuscript. Both authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Oliver Trapp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4262 kb)

Supplementary information

Crystallographic data for compound 3. (CIF 366 kb)

Supplementary information

Crystallographic data for compound 11. (CIF 495 kb)

Supplementary information

Crystallographic data for compound 16. (CIF 1128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storch, G., Trapp, O. By-design enantioselective self-amplification based on non-covalent product–catalyst interactions. Nature Chem 9, 179–187 (2017). https://doi.org/10.1038/nchem.2638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing