Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules

Abstract

Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds—known as plastic crystals—can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular and crystal structures.
Figure 2: Ferroelectric properties.
Figure 3: Direction of the crystal orientation.
Figure 4: Polarization enhancement by the application of an electric field.
Figure 5: Phase-dependent pressure-induced morphology changes of crystals of 1.

Similar content being viewed by others

References

  1. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 1977).

    Google Scholar 

  2. Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nature Mater. 7, 357–366 (2008).

    Article  CAS  Google Scholar 

  3. Tayi, A. S., Kaeser, A., Matsumoto, M., Aida, T. & Stupp, S. I. Supramolecular ferroelectrics. Nature Chem. 7, 281–294 (2015).

    Article  CAS  Google Scholar 

  4. Tokura, Y. et al. Domain-wall dynamics in organic charge-transfer compounds with one-dimensional ferroelectricity. Phys. Rev. Lett. 63, 2405–2408 (1989).

    Article  CAS  Google Scholar 

  5. Katrusiak, A. & Szafrański, M. Ferroelectricity in NH···N hydrogen bonded crystals. Phys. Rev. Lett. 82, 576–579 (1999).

    Article  CAS  Google Scholar 

  6. Horiuchi, S. et al. Ferroelectricity near room temperature in co-crystals of nonpolar organic molecules. Nature Mater. 4, 163–166 (2005).

    Article  CAS  Google Scholar 

  7. Horiuchi, S. et al. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 789–792 (2010).

    Article  CAS  Google Scholar 

  8. Tayi, A. S. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 488, 485–489 (2012).

    Article  CAS  Google Scholar 

  9. Fu, D.-W. et al. Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science 339, 425–428 (2013).

    Article  CAS  Google Scholar 

  10. Ling, M. M. & Bao, Z. Thin film deposition, patterning, and printing in organic thin film transistors. Chem. Mater. 16, 4824–4840 (2004).

    Article  CAS  Google Scholar 

  11. Gundlach, D. J. et al. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nature Mater. 7, 216–221 (2008).

    Article  CAS  Google Scholar 

  12. Gavezzotti, A. & Simonetta, M. Crystal chemistry in organic solids. Chem. Rev. 82, 1–13 (1982).

    Article  CAS  Google Scholar 

  13. Fyfe, C. A. Solid State NMR for Chemists (CFC, 1983).

    Google Scholar 

  14. Vogelsberg, C. S. & Garcia-Garibay, M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 41, 1892–1910 (2012).

    Article  CAS  Google Scholar 

  15. Yokokura, S. et al. Switching of transfer characteristics of an organic field-effect transistor by phase transitions: sensitive response to molecular dynamics and charge fluctuation. Chem. Mater. 27, 4441–4449 (2015).

    Article  CAS  Google Scholar 

  16. Goetz, K. P. et al. Freezing-in orientational disorder induces crossover from thermally-activated to temperature-independent transport in organic semiconductors. Nature Commun. 5, 5642 (2014).

    Article  CAS  Google Scholar 

  17. Harada, J. & Ogawa, K. Pedal motion in crystals. Chem. Soc. Rev. 38, 2244–2252 (2009).

    Article  CAS  Google Scholar 

  18. Horansky, R. D. et al. Dielectric response of a dipolar molecular rotor crystal. Phys. Rev. B 72, 014302 (2005).

    Article  Google Scholar 

  19. Harada, J., Ohtani, M., Takahashi, Y. & Inabe, T. Molecular motion, dielectric response, and phase transition of charge-transfer crystals: acquired dynamic and dielectric properties of polar molecules in crystals. J. Am. Chem. Soc. 137, 4477–4486 (2015).

    Article  CAS  Google Scholar 

  20. Akutagawa, T. et al. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nature Mater. 8, 342–347 (2009).

    Article  CAS  Google Scholar 

  21. Timmermans, J. Plastic crystals: a historical review. J. Phys. Chem. Solids 18, 1–8 (1961).

    Article  CAS  Google Scholar 

  22. Sherwood, J. N. The Plastically Crystalline State: Orientationally Disordered Crystals (Wiley, 1979).

    Google Scholar 

  23. Brand, R., Lunkenheimer, P. & Loidl, A. Relaxation dynamics in plastic crystals. J. Chem. Phys. 116, 10386–10401 (2002).

    Article  CAS  Google Scholar 

  24. MacFarlane, D. R., Huang, J. & Forsyth, M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 402, 792–794 (1999).

    Article  CAS  Google Scholar 

  25. MacFarlane, D. R. & Forsyth, M. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv. Mater. 13, 957–966 (2001).

    Article  CAS  Google Scholar 

  26. Pringle, J. M., Howlett, P. C., MacFarlane, D. R. & Forsyth, M. Organic ionic plastic crystals: recent advances. J. Mater. Chem. 20, 2056–2062 (2010).

    Article  CAS  Google Scholar 

  27. Cai, H.-L. et al. 4-(Cyanomethyl)anilinium perchlorate: a new displacive-type molecular ferroelectric. Phys. Rev. Lett. 107, 147601 (2011).

    Article  Google Scholar 

  28. Giacovazzo, C. Fundamentals of Crystallography (Oxford Univ. Press, 2002).

    Google Scholar 

  29. Parsons, S. Introduction to twinning. Acta Crystallogr. D 59, 1995–2003 (2003).

    Article  Google Scholar 

  30. Kagawa, F. et al. Polarization switching ability dependent on multidomain topology in a uniaxial organic ferroelectric. Nano Lett. 14, 239–243 (2014).

    Article  CAS  Google Scholar 

  31. Jaffe, B., Cook, W. R. Jr & Jaffe, H. Piezoelectric Ceramics (Academic, 1971).

    Google Scholar 

  32. Sawyer, C. B. & Tower, C. H. Rochelle salt as a dielectric. Phys. Rev. 35, 269–273 (1930).

    Article  CAS  Google Scholar 

  33. David, W. I. F. et al. DASH: a program for crystal structure determination from powder diffraction data. J. Appl. Crystallogr. 39, 910–915 (2006).

    Article  CAS  Google Scholar 

  34. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant no. 26620054 and a Grant-in-Aid for Scientific Research on Innovative Areas ‘π-System Figuration: Control of Electron and Structural Dynamism for Innovative Functions’ (Grant no. 15H00980) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank A. Kobayashi (Hokkaido University) for access to a Bruker D8 ADVANCE powder X-ray diffractometer.

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived and designed the study, performed the crystallographic studies and wrote the manuscript. T.S. and H.O. prepared the samples and performed the hysteresis experiments. T.S. carried out the dielectric measurements and thermal analysis. Y.T. assisted with the hysteresis and dielectric experiments. H.H. and H.O. carried out the SEM. K.S., Y.S. and J.K. conducted the SHG measurements. T.I. contributed to the design of the study and supervised the project.

Corresponding authors

Correspondence to Jun Harada or Tamotsu Inabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 969 kb)

Supplementary information

Crystallographic data for compound 1 at 300 K. (CIF 226 kb)

Supplementary information

Crystallographic data for compound 1 at 350 K. (CIF 131 kb)

Supplementary information

Crystallographic data for compound 1 at 380 K. (CIF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, J., Shimojo, T., Oyamaguchi, H. et al. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules. Nature Chem 8, 946–952 (2016). https://doi.org/10.1038/nchem.2567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing