Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quasicrystallinity expressed in two-dimensional coordination networks

Abstract

The recognition of quasicrystals, which exhibit long-range order but lack translational symmetry, represented both the introduction of a new class of materials and a transformative breakthrough in crystallography. Concomitant with the exploration of quasicrystallinity, metal–organic architectures emerged as promising and versatile systems with significant application potential. Their building principles have been studied extensively and become manifest in a multitude of intricate amorphous and crystalline phases. To date, however, indications for quasicrystalline order have been elusive in metal–organic coordination networks (MOCNs). Here we employ rare-earth-directed assembly to construct a two-dimensional tiling with quasicrystalline characteristics at a well-defined gold substrate. By careful stoichiometry control over europium centres and functional linkers, we produced a porous network, including the simultaneous expression of four-fold, five-fold and six-fold vertices. The pertaining features were directly inspected by scanning tunnelling microscopy, and the molecule–europium reticulation was recognized as square-triangle tessellation with dodecagonal symmetry. Our findings introduce quasicrystallinity in surface-confined MOCNs with a nanoporous structure and anticipate functionalities that arise from quasicrystalline ordering of the coordinative spheres.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Eu-directed assembly of MOCNs on Au(111).
Figure 2: 2D metal–organic random-tiling QC.
Figure 3: Dodecagonal random-tiling QC.

References

  1. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    CAS  Article  Google Scholar 

  2. Levine, D. & Steinhardt, P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).

    CAS  Google Scholar 

  3. Janssen, T., Chapuis, G. & Boissieu, M. D. Aperiodic Crystals: from Modulated Phases to Quasicrystals (Oxford Univ. Press, 2007).

    Google Scholar 

  4. Steurer, W. & Deloudi, S. Crystallography of Quasicrystals (Springer, 2009).

    Google Scholar 

  5. Baake, M. & Grimm, U. Encyclopedia of Mathematics and Its Applications: Aperiodic Order (Cambridge Univ. Press, 2013).

    Google Scholar 

  6. Poon, S. J. Electronic properties of quasicrystals: an experimental review. Adv. Phys. 41, 303–363 (1992).

    CAS  Google Scholar 

  7. Dubois, J.-M. Properties- and applications of quasicrystals and complex metallic alloys. Chem. Soc. Rev. 41, 6760–6777 (2012).

    CAS  PubMed  Google Scholar 

  8. Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nature Photon. 7, 177–187 (2013).

    CAS  Google Scholar 

  9. Deguchi, K. et al. Quantum critical state in a magnetic quasicrystal. Nature Mater. 11, 1013–1016 (2012).

    CAS  Google Scholar 

  10. Ishimasa, T., Nissen, H. U. & Fukano, Y. New ordered state between crystalline and amorphous in Ni–Cr particles. Phys. Rev. Lett. 55, 511–513 (1985).

    CAS  PubMed  Google Scholar 

  11. Steurer, W. Twenty years of structure research on quasicrystals. Z. Kristallogr. 219, 391–446 (2004).

    CAS  Google Scholar 

  12. Ishimasa, T. Dodecagonal quasicrystals still in progress. Isr. J. Chem. 51, 1216–1225 (2011).

    CAS  Google Scholar 

  13. Steurer, W. Why are quasicrystals quasiperiodic? Chem. Soc. Rev. 41, 6719–6729 (2012).

    CAS  PubMed  Google Scholar 

  14. Bindi, L., Steinhardt, P. J., Yao, N. & Lu, P. J. Natural quasicrystals. Science 324, 1306–1309 (2009).

    CAS  PubMed  Google Scholar 

  15. Ishimasa, T. et al. Phason space analysis and structure modeling of 100 Å-scale dodecagonal quasicrystal in Mn-based alloy. Phil. Mag. A 95, 3745–3767 (2015).

    Google Scholar 

  16. Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004).

    CAS  PubMed  Google Scholar 

  17. Fischer, S. et al. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proc. Natl Acad. Sci. USA 108, 1810–1814 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hayashida, K., Dotera, T., Takano, A. & Matsushita, Y. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007).

    PubMed  Google Scholar 

  19. Xiao, C. et al. Dodecagonal tiling in mesoporous silica. Nature 487, 349–353 (2012).

    CAS  PubMed  Google Scholar 

  20. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

    CAS  PubMed  Google Scholar 

  21. Förster, S. et al. Quasicrystalline structure formation in a classical crystalline thin-film system. Nature 502, 215–218 (2013).

    PubMed  Google Scholar 

  22. Wasio, N. A. et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507, 86–89 (2014).

    CAS  PubMed  Google Scholar 

  23. Chen, H., Li, D. X. & Kuo, K. H. New type of two-dimensional quasicrystal with twelvefold rotational symmetry. Phys. Rev. Lett. 60, 1645–1648 (1988).

    CAS  PubMed  Google Scholar 

  24. Conrad, M., Krumeich, F. & Harbrecht, B. A dodecagonal quasicrystalline chalcogenide. Angew. Chem. Int. Ed. 37, 1383–1386 (1998).

    Google Scholar 

  25. Lifshitz, R. & Diamant, H. Soft quasicrystals—why are they stable? Phil. Mag. 87, 3021–3030 (2007).

    CAS  Google Scholar 

  26. Dotera, T. Toward the discovery of new soft quasicrystals: from a numerical study viewpoint. J. Polym. Sci. B 50, 155–167 (2011).

    Google Scholar 

  27. Ungar, G. & Zeng, X. Frank–Kasper, quasicrystalline and related phases in liquid crystals. Soft Matter 1, 95–106 (2005).

    CAS  PubMed  Google Scholar 

  28. Keys, A. S. & Glotzer, S. C. How do quasicrystals grow? Phys. Rev. Lett. 99, 235503 (2007).

    PubMed  Google Scholar 

  29. Yang, Z., Wei, J., Bonville, P. & Pileni, M.-P. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices. J. Am. Chem. Soc. 137, 4487–4493 (2015).

    CAS  PubMed  Google Scholar 

  30. Lee, S., Bluemle, M. J. & Bates, F. S. Discovery of a Frank–Kasper σ phase in sphere-forming block copolymer melts. Science 330, 349–353 (2010).

    CAS  PubMed  Google Scholar 

  31. Iacovella, C. R., Keys, A. S. & Glotzer, S. C. Self-assembly of soft-matter quasicrystals and their approximants. Proc. Natl Acad. Sci. USA 108, 20935–20940 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Goldman, A. I. & Kelton, R. F. Quasicrystals and crystalline approximants. Rev. Mod. Phys. 65, 213–230 (1993).

    Google Scholar 

  33. Gähler, F. Quasicrystal Structures from the Crystallographic Viewpoint (ETH Zürich, 1988).

    Google Scholar 

  34. Gähler, F. in Quasicrystalline Materials (eds Janot, D. & Dubois, J. M.) 272–284 (World Scientific, 1988).

    Google Scholar 

  35. Niizeki, N. & Mitani, H. Two-dimensional dodecagonal quasilattices. J. Phys. A 20, L405–L410 (1987).

    Google Scholar 

  36. Baake, M., Klitzing, R. & Schlottmann, M. Fractally shaped acceptance domains of quasiperiodic square–triangle tilings with dodecagonal symmetry. Phys. A 191, 554–558 (1992).

    Google Scholar 

  37. Kawamura, H. Statistics of two-dimensional amorphous lattice. Prog. Theor. Phys. 70, 352–365 (1983).

    CAS  Google Scholar 

  38. Leung, P. W., Henley, C. L. & Chester, G. V. Dodecagonal order in a two-dimensional Lennard–Jones system. Phys. Rev. B 39, 446–458 (1989).

    CAS  Google Scholar 

  39. Oxborrow, M. & Henley, C. L. Random square–triangle tilings. Phys. Rev. B 48, 6996–6998 (1993).

    Google Scholar 

  40. Widom, M. Bethe ansatz solution of the square–triangle random tiling model. Phys. Rev. Lett. 70, 2094–2097 (1993).

    CAS  PubMed  Google Scholar 

  41. Grimm, U. & Joseph, D. in Quasicrystals (eds Suck, J.-B., Schreiber, M. & Häussler, P.) 199–218 (Springer Series in Materials Science 55, Springer, 2002).

    Google Scholar 

  42. Dzugutov, M. Formation of a dodecagonal quasicrystalline phase in a simple monatomic liquid. Phys. Rev. Lett. 70, 2924–2927 (1993).

    CAS  PubMed  Google Scholar 

  43. Barkan, K., Diamant, H. & Lifshitz, R. Stability of quasicrystals composed of soft isotropic particles. Phys. Rev. B 83, 172201 (2011).

    Google Scholar 

  44. Barkan, K., Engel, M. & Lifshitz, R. Controlled self-assembly of periodic and aperiodic cluster crystals. Phys. Rev. Lett. 113, 098304 (2014).

    PubMed  Google Scholar 

  45. Dotera, T., Oshiro, T. & Ziherl, P. Mosaic two-length-scale quasicrystals. Nature 506, 208–211 (2014).

    CAS  PubMed  Google Scholar 

  46. Glotzer, S. C. Assembly engineering: materials design for the 21st century. Chem. Eng. Sci. 121, 3–9 (2015).

    CAS  Google Scholar 

  47. Barth, J. V. Fresh perspectives for surface coordination chemistry. Surf. Sci. 603, 1533–1541 (2009).

    CAS  Google Scholar 

  48. Lin, N., Stepanow, S., Ruben, M. & Barth, J. V. Surface-confined supramolecular coordination chemistry. Top. Curr. Chem. 287, 1–44 (2009).

    CAS  PubMed  Google Scholar 

  49. Bünzli, J.-C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 39, 53–61 (2006).

    PubMed  Google Scholar 

  50. Klyatskaya, S. et al. Surface-confined self-assembly of di-carbonitrile polyphenyls. Adv. Funct. Mater. 21, 1230–1240 (2011).

    CAS  Google Scholar 

  51. Schlickum, U. et al. Metal–organic honeycomb nanomeshes with tunable cavity size. Nano Lett. 7, 3813–3817 (2007).

    CAS  PubMed  Google Scholar 

  52. Écija, D. et al. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. Proc. Natl Acad. Sci. USA 110, 6678–6681 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Urgel, J. I. et al. Five-vertex lanthanide coordination on surfaces: a route to sophisticated nanoarchitectures and tessellations. J. Phys. Chem. C 118, 12908–12915 (2014).

    CAS  Google Scholar 

  54. Urgel, J. I. et al. Surface-supported robust two-dimensional lanthanide-carboxylate coordination networks. Small 11, 6358–6364 (2015).

    CAS  PubMed  Google Scholar 

  55. Barth, J. V., Brune, H., Ertl, G. & Behm, R. J. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B 42, 9307–9318 (1990).

    CAS  Google Scholar 

  56. Joseph, D. & Elser, V. A model of quasicrystal growth. Phys. Rev. Lett. 79, 1066–1069 (1997).

    CAS  Google Scholar 

  57. Müllegger, S. et al. Organic molecular beam deposition of oligophenyls on Au(111): a study by X-ray absorption spectroscopy. ChemPhysChem 7, 2552–2558 (2006).

    PubMed  Google Scholar 

  58. Marschall, M. et al. Supramolecular organization and chiral resolution of p-terphenyl-m-dicarbonitrile on the Ag(111) surface. ChemPhysChem 11, 1446–1451 (2010).

    CAS  PubMed  Google Scholar 

  59. Klappenberger, F. et al. Uniform π-system alignment in thin films of template-grown dicarbonitrile–oligophenyls. Adv. Funct. Mater. 21, 1631–1642 (2011).

    CAS  Google Scholar 

  60. Henze, S. K. M. et al. Vertical bonding distances of PTCDA on Au(111) and Ag(111): relation to the bonding type. Surf. Sci. 601, 1566–1573 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Baake, M. Engel and M. Garnica for fruitful discussions and suggestions, as well as M. Ruben and S. Klyatskaya for providing the molecular linkers. This work was supported by a European Research Council Advanced Grant MolArt (No. 247299), the European Commission FP7-PEOPLE-2011-COFUND AMAROUT II program, the Spanish Ramón and Cajal Program (No. RYC-2012-11133), the Comunidad de Madrid (project MAD2D), the Hong Kong Research Grants Council (No. 603213) and the TUM-HKUST Sponsorship Scheme for Targeted Strategic Partnerships. W.A. acknowledges funding by the German Research Foundation (DFG) via a Heisenberg professorship.

Author information

Authors and Affiliations

Authors

Contributions

D.E., J.I.U., N.L. and J.V.B. conceived and designed the experiments. G.L., R.Z. and J.I.U. performed the experiments. D.E., J.I.U., C.-A.P. and J.V B. analysed the data. D.E., J.I.U., C.-A.P., W.A., N.L. and J.V.B. co-wrote the paper.

Corresponding authors

Correspondence to David Écija, Nian Lin or Johannes V. Barth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2643 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urgel, J., Écija, D., Lyu, G. et al. Quasicrystallinity expressed in two-dimensional coordination networks. Nature Chem 8, 657–662 (2016). https://doi.org/10.1038/nchem.2507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2507

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing