Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions

Abstract

Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the first time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probing SWCNT exciton dissociation as a function of thermodynamic driving force using TRMC.
Figure 2: TRMC photoconductance transients at I0FA = 2 × 1012 cm−2 for the SWCNT bilayers (with C60 and C60(CF3)4) and neat films ((7,5) SWCNTs and LV SWCNTs).
Figure 3: Yield-mobility product versus absorbed flux.
Figure 4: Relative yield versus ΔGPET for (7,5) and LV bilayers with fullerene derivatives.

Similar content being viewed by others

References

  1. Bindl, D. J., Wu, M.-Y., Prehn, F. C. & Arnold, M. S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 11, 455–460 (2011).

    Article  CAS  Google Scholar 

  2. Umeyama, T. et al. Carbon nanotube wiring of donor–acceptor nanograins by self-assembly and efficient charge transport. Angew. Chem. Int. Ed. 50, 4615–4619 (2011).

    Article  CAS  Google Scholar 

  3. Umeyama, T. et al. Selective formation and efficient photocurrent generation of [70]fullerene–single-walled carbon nanotube composites. Advanced Mater. 22, 1767–1770 (2010).

    Article  CAS  Google Scholar 

  4. Arnold, M. S. et al. Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. Phys. Chem. Chem. Phys. 15, 14896–14918 (2013).

    Article  CAS  Google Scholar 

  5. Guillot, S. L. et al. Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells. Nanoscale 7, 6556–6566 (2015).

    Article  CAS  Google Scholar 

  6. Shea, M. J. & Arnold, M. S. 1% solar cells derived from ultrathin carbon nanotube photoabsorbing films. Appl. Phys. Lett. 102, 243101 (2013).

    Article  Google Scholar 

  7. Dowgiallo, A.-M., Mistry, K. S., Johnson, J. C. & Blackburn, J. L. Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60 . ACS Nano 8, 8573–8581 (2014).

    Article  CAS  Google Scholar 

  8. Bindl, D. J. et al. Free carrier generation and recombination in polymer-wrapped semiconducting carbon nanotube films and heterojunctions. J. Phys. Chem. Lett. 4, 3550–3559 (2013).

    Article  CAS  Google Scholar 

  9. Marcus, R. A. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964).

    Article  CAS  Google Scholar 

  10. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966 (1956).

    Article  CAS  Google Scholar 

  11. Closs, G. L. & Miller, J. R. Intramolecular long-distance electron transfer in organic molecules. Science 240, 440–447 (1988).

    Article  CAS  Google Scholar 

  12. Coffey, D. C. et al. An optimal driving force for converting excitons into free carriers in excitonic solar cells. J. Phys. Chem. C 116, 8916–8923 (2012).

    Article  CAS  Google Scholar 

  13. Hilmer, A. J., Tvrdy, K., Zhang, J. & Strano, M. S. Charge transfer structure–reactivity dependence of fullerene-single-walled carbon nanotube heterojunctions. J. Am. Chem. Soc. 135, 11901–11910 (2013).

    Article  CAS  Google Scholar 

  14. Miller, J. R., Calcaterra, L. T. & Closs, G. L. Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106, 3047–3049 (1984).

    Article  CAS  Google Scholar 

  15. Tvrdy, K., Frantsuzov, P. A. & Kamat, P. V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl Acad. Sci. 108, 29–34 (2011).

    Article  CAS  Google Scholar 

  16. Ai, X., Anderson, N. A., Guo, J. & Lian, T. Electron injection dynamics of Ru polypyridyl complexes on SnO2 nanocrystalline thin films. J. Phys. Chem. B 109, 7088–7094 (2005).

    Article  CAS  Google Scholar 

  17. Popov, A. A. et al. Electrochemical, spectroscopic, and DFT study of C60(CF3)n frontier orbitals (n = 2–18): the link between double bonds in pentagons and reduction potentials. J. Am. Chem. Soc. 129, 11551–11568 (2007).

    Article  CAS  Google Scholar 

  18. Ferguson, A. J. et al. Trap-limited carrier recombination in single-walled carbon nanotube heterojunctions with fullerene acceptor layers. Phys. Rev. B 91, 245311 (2015).

    Article  Google Scholar 

  19. Mistry, K. S., Larsen, B. A. & Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 7, 2231–2239 (2013).

    Article  CAS  Google Scholar 

  20. Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotech. 2, 640–646 (2007).

    Article  CAS  Google Scholar 

  21. Holt, J. M. et al. Prolonging charge separation in P3HT:SWNT composites using highly enriched semiconducting nanotubes. Nano Lett. 10, 4627–4633 (2010).

    Article  CAS  Google Scholar 

  22. Ferguson, A. J. et al. Photoinduced energy and charge transfer in P3HT:SWNT composites. J. Phys. Chem. Lett. 1, 2406–2411 (2010).

    Article  CAS  Google Scholar 

  23. Ferguson, A. J., Blackburn, J. L. & Kopidakis, N. Fullerenes and carbon nanotubes as acceptor materials in organic photovoltaics. Mater. Lett. 90, 115–125 (2013).

    Article  CAS  Google Scholar 

  24. Ferguson, A. J., Kopidakis, N., Shaheen, S. E. & Rumbles, G. Dark carriers, trapping, and activation control of carrier recombination in neat P3HT and P3HT:PCBM blends. J. Phys. Chem. C 115, 23134–23148 (2011).

    Article  CAS  Google Scholar 

  25. Capaz, R. B., Spataru, C. D., Ismail-Beigi, S. & Louie, S. G. Excitons in carbon nanotubes: diameter and chirality trends. Phys. Status Solidi B 244, 4016–4020 (2007).

    Article  CAS  Google Scholar 

  26. Dukovic, G. et al. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005).

    Article  CAS  Google Scholar 

  27. de Haas, M. P., Warman, J. M., Anthopoulos, T. D. & de Leeuw, D. M. The mobility and decay kinetics of charge carriers in pulse-ionized microcrystalline PCBM powder. Adv. Funct. Mater. 16, 2274–2280 (2006).

    Article  CAS  Google Scholar 

  28. Yoshikawa, S., Saeki, A., Saito, M., Osaka, I. & Seki, S. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics. Phys. Chem. Chem. Phys. 17, 17778–17784 (2015).

    Article  CAS  Google Scholar 

  29. Parson, W. W., Chu, Z. T. & Warshel, A. Reorganization energy of the initial electron-transfer step in photosynthetic bacterial reaction centers. Biophys. J. 74, 182–191 (1998).

    Article  CAS  Google Scholar 

  30. Kawashima, Y., Ohkubo, K. & Fukuzumi, S. Small reorganization energies of photoinduced electron transfer between spherical fullerenes. J. Phys. Chem. A 117, 6737–6743 (2013).

    Article  CAS  Google Scholar 

  31. Vehmanen, V., Tkachenko, N. V., Imahori, H., Fukuzumi, S. & Lemmetyinen, H. Charge-transfer emission of compact porphyrin–fullerene dyad analyzed by Marcus theory of electron-transfer. Spectrochim. Acta A 57, 2229–2244 (2001).

    Article  CAS  Google Scholar 

  32. Imahori, H. et al. An extremely small reorganization energy of electron transfer in porphyrin−fullerene dyad. J. Phys. Chem. A 105, 1750–1756 (2001).

    Article  CAS  Google Scholar 

  33. Guldi, D. M., Rahman, G. M. A., Sgobba, V. & Ehli, C. Multifunctional molecular carbon materials—from fullerenes to carbon nanotubes. Chem. Soc. Rev. 35, 471–487 (2006).

    Article  CAS  Google Scholar 

  34. Niklas, J. et al. Charge separation in P3HT:SWCNT blends studied by EPR: spin signature of the photoinduced charged state in SWCNT. J. Phys. Chem. Lett. 5, 601–606 (2014).

    Article  CAS  Google Scholar 

  35. Gruhn, N. E. et al. The vibrational reorganization energy in pentacene: molecular influences on charge transport. J. Am. Chem. Soc. 124, 7918–7919 (2002).

    Article  CAS  Google Scholar 

  36. Bromley, S. T., Illas, F. & Mas-Torrent, M. Dependence of charge transfer reorganization energy on carrier localisation in organic molecular crystals. Phys. Chem. Chem. Phys. 10, 121–127 (2008).

    Article  CAS  Google Scholar 

  37. Gao, J. & Loi, M. A. Photophysics of polymer-wrapped single-walled carbon nanotubes. Eur. Phys. J. B 75, 121–126 (2010).

    Article  CAS  Google Scholar 

  38. Dicker, G., de Haas, M. P., Siebbeles, L. D. A. & Warman, J. M. Electrodeless time-resolved microwave conductivity study of charge-carrier photogeneration in regioregular poly(3-hexylthiophene) thin films. Phys. Rev. B 70, 045203 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We especially thank N. Kopidakis and R. Larsen for helpful discussions. R.I., K.S.M., A.J.F, G.R. and J.L.B. were funded by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy (Grant DE-AC3608GO28308). T.T.C., B.W.L., O.V.B. and S.H.S. acknowledge funding from the National Science Foundation (Grants CHE-1012468 and CHE-1362302).

Author information

Authors and Affiliations

Authors

Contributions

G.R., J.L.B. and A.J.F. conceived and designed the experiments. R.I. and K.S.M. prepared the bilayer samples and performed the experiments. T.T.C. and B.W.L. synthesized, purified and characterized the fullerene acceptors. A.J.F. and O.R. developed the kinetic analysis and facilitated the data fitting of the TRMC transients and Marcus curves. R.I., K.S.M., A.J.F. and J.L.B. wrote the paper. G.R., J.L.B., O.V.B. and S.H.S. supervised the overall project. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jeffrey L. Blackburn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihly, R., Mistry, K., Ferguson, A. et al. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions. Nature Chem 8, 603–609 (2016). https://doi.org/10.1038/nchem.2496

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing