Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A direct approach to amines with remote stereocentres by enantioselective CuH-catalysed reductive relay hydroamination

Abstract

Amines with remote stereocentres (stereocentres that are three or more bonds away from the C–N bond) are important structural elements in many pharmaceutical agents and natural products. However, previously reported methods to prepare these compounds in an enantioselective manner are indirect and require multistep synthesis. Here, we report a copper-hydride-catalysed, enantioselective synthesis of γ- or δ-chiral amines from readily available allylic alcohols, esters and ethers using a reductive relay hydroamination strategy (a net reductive process in which an amino group is installed at a site remote from the original carbon–carbon double bond). The protocol was suitable for substrates containing a wide range of functional groups and provided remote chiral amine products with high levels of regio- and enantioselectivity. Sequential amination of substrates containing several carbon–carbon double bonds could be achieved, demonstrating the high chemoselectivity of this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of a CuH-catalysed relay hydroamination reaction.
Figure 2: Synthetic applications of CuH-catalysed reductive relay hydroamination.

Similar content being viewed by others

References

  1. Nugent, T. C. Chiral Amine Synthesis: Methods, Developments and Applications (Wiley-VCH, 2010).

    Book  Google Scholar 

  2. Nguyen, L. A., He, H. & Pham-Huy, C. Chiral drugs: an overview. Int. J. Biomed. Sci. 2, 85–100 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Werner, E. W., Mei, T.-S., Burckle, A. J. & Sigman, M. S. Enantioselective Heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338, 1455–1458 (2012).

    Article  CAS  Google Scholar 

  4. Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocenters. Nature 508, 340–344 (2014).

    Article  CAS  Google Scholar 

  5. Pirnot, M. T., Rankic, D. A., Martin, D. B. C. & MacMillan, D. W. C. Photoredox activation for the direct β-arylation of ketones and aldehydes. Science 339, 1593–1596 (2013).

    Article  CAS  Google Scholar 

  6. Deutsch, C., Krause, N. & Lipshutz, B. H. CuH-catalyzed reactions. Chem. Rev. 108, 2916–2927 (2008).

    Article  CAS  Google Scholar 

  7. Lipshutz, B. H. Rediscovering organocopper chemistry through copper hydride. It's all about the ligand. Synlett 509–524 (2009).

    Article  Google Scholar 

  8. Alexakis, A., Krause, N. & Woodward, S. Copper-Catalyzed Asymmetric Synthesis (Wiley, 2014).

    Book  Google Scholar 

  9. Ketcham, J. M., Shin, I., Montgomery, T. P. & Krische, M. J. Catalytic enantioselective C−H functionalization of alcohols by redox-triggered carbonyl addition: borrowing hydrogen, returning carbon. Angew. Chem. Int. Ed. 53, 9142–9150 (2014).

    Article  CAS  Google Scholar 

  10. Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).

    Article  CAS  Google Scholar 

  11. Sahli, Z., Sundararaju, B., Achard, M. & Bruneau, C. Ruthenium-catalyzed reductive amination of allylic alcohols. Org. Lett. 13, 3964–3967 (2011).

    Article  CAS  Google Scholar 

  12. Li, H., Achard, M., Bruneau, C., Sortais, J.-B. & Darcel, C. Iron-catalysed tandem isomerisation/hydrosilylation reaction of allylic alcohols with amines. RSC Adv. 4, 25892–25897 (2014).

    Article  CAS  Google Scholar 

  13. Müller, T. E., Hultzch, K. C., Yus, M., Foubelo, F. & Tada, M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795–3892 (2008).

    Article  Google Scholar 

  14. Hesp, K. D. Copper-catalyzed regio- and enantioselective hydroamination of alkenes with hydroxylamines. Angew. Chem. Int. Ed. 53, 2034–2036 (2014).

    Article  CAS  Google Scholar 

  15. Huang, L., Arndt, M., Gooßen, K., Heydt, H. & Gooßen, L. J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 115, 2596–2697 (2015).

    Article  CAS  Google Scholar 

  16. Zhu, S., Niljianskul, N. & Buchwald, S. L. Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc. 135, 15746–15749 (2013).

    Article  CAS  Google Scholar 

  17. Niljianskul, N., Zhu, S. & Buchwald, S. L. Enantioselective synthesis of α-aminosilanes by copper-catalyzed hydroamination of vinylsilanes. Angew. Chem. Int. Ed. 54, 1638–1641 (2015).

    Article  CAS  Google Scholar 

  18. Shi, S.-L. & Buchwald, S. L. Copper-catalysed selective hydroamination reactions of alkynes. Nature Chem. 7, 38–44 (2015).

    Article  CAS  Google Scholar 

  19. Niu, D. & Buchwald, S. L. The design of modified amine transfer reagents allows the synthesis of α-chiral secondary amines via CuH-catalyzed hydroamination. J. Am. Chem. Soc. 137, 9716–9721 (2015).

    Article  CAS  Google Scholar 

  20. Miki, Y., Hirano, K., Satoh, T. & Miura, M. Copper-catalyzed intermolecular regioselective hydroamination of styrenes with polymethylhydrosiloxane and hydroxylamines. Angew. Chem. Int. Ed. 52, 10830–10834 (2013).

    Article  CAS  Google Scholar 

  21. Miki, Y., Hirano, K., Satoh, T. & Miura, M. Copper-catalyzed enantioselective formal hydroamination of oxa- and azabicyclic alkenes with hydrosilanes and hydroxylamines. Org. Lett. 16, 1498–1501 (2014).

    Article  CAS  Google Scholar 

  22. Zhu, S. & Buchwald, S. L. Enantioselective CuH-catalyzed anti-Markovnikov hydroamination of 1,1-disubstituted alkenes. J. Am. Chem. Soc. 136, 15913–15916 (2014).

    Article  CAS  Google Scholar 

  23. Yorimitsu, H. & Oshima, K. Recent progress in asymmetric allylic substitutions catalyzed by chiral copper complexes. Angew. Chem. Int. Ed. 44, 4435–4439 (2005).

    Article  CAS  Google Scholar 

  24. Alexakis, A., Bäckvall, J. E., Krause, N., Pàmies, O. & Diéguez, M. Enantioselective copper-catalyzed conjugate addition and allylic substitution reactions. Chem. Rev. 108, 2796–2823 (2008).

    Article  CAS  Google Scholar 

  25. Ito, H., Ito, S., Sasaki, Y., Matsuura, K. & Sawamura, M. Copper-catalyzed enantioselective substitution of allylic carbonates with diboron: an efficient route to optically active α-chiral allylboronates. J. Am. Chem. Soc. 129, 14856–14857 (2007).

    Article  CAS  Google Scholar 

  26. Park, J. K., Lackey, H. H., Ondrusek, B. A. & McQuade, D. T. Stereoconvergent synthesis of chiral allylboronates from an E/Z mixture of allylic aryl ethers using a 6-NHC-Cu(I) catalyst. J. Am. Chem. Soc. 133, 2410–2413 (2011).

    Article  CAS  Google Scholar 

  27. Guzman-Martinez, A. & Hoveyda, A. H. Enantioselective synthesis of allylboronates bearing a tertiary or quaternary β-substituted stereogenic carbon by NHC-Cu-catalyzed substitution reactions. J. Am. Chem. Soc. 132, 10634–10637 (2010).

    Article  CAS  Google Scholar 

  28. Ito, H., Kunii, S. & Sawamura, M. Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization. Nature Chem. 2, 972–976 (2010).

    Article  CAS  Google Scholar 

  29. Delvos, L. B., Vyas, D. J. & Oestreich, M. Asymmetric synthesis of α-chiral allylic silanes by enantioconvergent γ-selective copper(I)-catalyzed allylic silylation. Angew. Chem. Int. Ed. 52, 4650–4653 (2013).

    Article  CAS  Google Scholar 

  30. Brestensky, D. M. & Stryker, J. M. Regioselective conjugate reduction and reductive silylation of α,β-unsaturated. Tetrahedron Lett. 30, 5677–5680 (1989).

    Article  CAS  Google Scholar 

  31. Lipshutz, B. H., Chrisman, W. & Noson, K. Hydrosilylation of aldehydes and ketones catalyzed by [Ph3P(CuH)]6 . J. Org. Chem. 624, 367–371 (2001).

    Article  CAS  Google Scholar 

  32. Lipshutz, B. H., Noson, K., Chrisman, W. & Lower, A. Asymmetric hydrosilylation of aryl ketones catalyzed by copper hydride complexed by nonracemic biphenyl bis-phosphine ligands. J. Am. Chem. Soc. 125, 8779–8782 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to P. Knochel on the occasion of his 60th birthday. Research reported in this publication was supported by the National Institutes of Health under award no. GM58160. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank P. Müller (MIT) for X-ray analysis of 3g and Y.-M. Wang, M.T. Pirnot and C. Nguyen for their advice on the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.Z. and S.L.B designed the project. S.Z., N.N. and S.L.B. co-wrote the manuscript, analysed the data, discussed the results and commented on the manuscript. S.Z. and N.N. performed the experiments.

Corresponding author

Correspondence to Stephen L. Buchwald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5615 kb)

Supplementary information

Crystallographic data for compound 3g. (CIF 1225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Niljianskul, N. & Buchwald, S. A direct approach to amines with remote stereocentres by enantioselective CuH-catalysed reductive relay hydroamination. Nature Chem 8, 144–150 (2016). https://doi.org/10.1038/nchem.2418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing