Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local vibrational coherences drive the primary photochemistry of vision

Abstract

The role of vibrational coherence—concerted vibrational motion on the excited-state potential energy surface—in the isomerization of retinal in the protein rhodopsin remains elusive, despite considerable experimental and theoretical efforts. We revisited this problem with resonant ultrafast heterodyne-detected transient-grating spectroscopy. The enhanced sensitivity that this technique provides allows us to probe directly the primary photochemical reaction of vision with sufficient temporal and spectral resolution to resolve all the relevant nuclear dynamics of the retinal chromophore during isomerization. We observed coherent photoproduct formation on a sub-50 fs timescale, and recovered a host of vibrational modes of the retinal chromophore that modulate the transient-grating signal during the isomerization reaction. Through Fourier filtering and subsequent time-domain analysis of the transient vibrational dynamics, the excited-state nuclear motions that drive the isomerization reaction were identified, and comprise stretching, torsional and out-of-plane wagging motions about the local C11=C12 isomerization coordinate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The linear absorption spectrum of rhodopsin.
Figure 2: Transient-grating spectroscopy of rhodopsin.
Figure 3: Vibrational dynamics of retinal isomerization in rhodopsin.
Figure 4: Localized excited-state vibrational modes of the retinal chromophore in rhodopsin.

Similar content being viewed by others

References

  1. Ernst, O. P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014).

    CAS  PubMed  Google Scholar 

  2. Frutos, L. M., Andruniów, T., Santoro, F., Ferré, N. & Olivucci, M. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc. Natl Acad. Sci. USA 104, 7764–7769 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dartnall, H. J. A. The photosensitivities of visual pigments in the presence of hydroxylamine. Vision Res. 8, 339–358 (1968).

    CAS  PubMed  Google Scholar 

  4. Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. The first step in vision: femtosecond isomerization of rhodopsin. Science 254, 412–415 (1991).

    CAS  PubMed  Google Scholar 

  5. Peteanu, L. A., Schoenlein, R. W., Wang, Q., Mathies, R. A. & Shank, C. V. The first step in vision occurs in femtoseconds: complete blue and red spectral studies. Proc. Natl Acad. Sci. USA 90, 11762–11766 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoshizawa, T. & Wald, G. Pre-lumirhodopsin and the bleaching of visual pigments. Nature 197, 1279–1286 (1963).

    CAS  PubMed  Google Scholar 

  7. Busch, G. E., Applebury, M. L., Lamola, A. A. & Rentzepis, P. M. Formation and decay of prelumirhodopsin at room temperature. Proc. Natl Acad. Sci. USA 69, 2802–2806 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, Q., Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science 266, 422–424 (1994).

    CAS  PubMed  Google Scholar 

  9. Eyring, G., Curry, B., Broek, A., Lugtenburg, J. & Mathies, R. A. Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and bathorhodopsin. Biochemistry 21, 384–393 (1982).

    CAS  PubMed  Google Scholar 

  10. Palings, I. et al. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment. Biochemistry 26, 2544–2556 (1987).

    CAS  PubMed  Google Scholar 

  11. Lin, S. W. et al. vibrational assignment of torsional normal modes of rhodopsin: probing excited-state isomerization dynamics along the reactive C11=C12 torsion coordinate. J. Phys. Chem. B 40, 2787–2806 (1998).

    Google Scholar 

  12. Kim, J. E., Tauber, M. J. & Mathies, R. A. Wavelength dependent cis–trans isomerization in vision. Biochemistry 40, 13774–13778 (2001).

    CAS  PubMed  Google Scholar 

  13. Kim, J. E., Tauber, M. J. & Mathies, R. A. Analysis of the mode-specific excited-state energy distribution and wavelength-dependent photoreaction quantum yield in rhodopsin. Biophys. J. 84, 2492–2501 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B. & Mathies, R. A. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310, 1006–1009 (2005).

    CAS  PubMed  Google Scholar 

  15. Weingart, O. et al. Product formation in rhodopsin by fast hydrogen motions. Phys. Chem. Chem. Phys. 13, 3645–3648 (2011).

    CAS  PubMed  Google Scholar 

  16. Schapiro, I. et al. The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J. Am. Chem. Soc. 133, 3354–3364 (2011).

    CAS  PubMed  Google Scholar 

  17. Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).

    CAS  PubMed  Google Scholar 

  18. Kahan, A., Nahmias, O., Friedman, N., Sheves, M. & Ruhman, S. Following photoinduced dynamics in bacteriorhodopsin with 7-fs impulsive vibrational spectroscopy. J. Am. Chem. Soc. 129, 537–546 (2007).

    CAS  PubMed  Google Scholar 

  19. Yabushita, A. & Kobayashi, T. Primary conformation change in bacteriorhodopsin on photoexcitation. Biophys. J. 96, 1447–1461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kraack, J. P., Buckup, T., Hampp, N. & Motzkus, M. Ground- and excited-state vibrational coherence dynamics in bacteriorhodopsin probed with degenerate four-wave-mixing experiments. ChemPhysChem 12, 1851–1859 (2011).

    CAS  PubMed  Google Scholar 

  21. Liebel, M. et al. Direct observation of the coherent nuclear response after the absorption of a photon. Phys. Rev. Lett. 112, 238301 (2014).

    CAS  PubMed  Google Scholar 

  22. Johnson, P. J. M. et al. The photocycle and ultrafast vibrational dynamics of bacteriorhodopsin in lipid nanodiscs. Phys. Chem. Chem. Phys. 16, 21310–21320 (2014).

    CAS  PubMed  Google Scholar 

  23. Zhu, J. et al. Comparing photochemistry of n- and tert-butylamine all-trans retinal protonated Schiff-base: effects of C=N configurational inhomogeneity. Chem. Phys. Lett. 479, 229–233 (2009).

    CAS  Google Scholar 

  24. Kraack, J. P., Buckup, T. & Motzkus, M. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases. Phys. Chem. Chem. Phys. 13, 21402–21410 (2011).

    CAS  PubMed  Google Scholar 

  25. Kraack, J. P., Buckup, T. & Motzkus, M. Evidence for the two-state-two-mode model in retinal protonated Schiff-bases from pump degenerate four-wave-mixing experiments. Phys. Chem. Chem. Phys. 14, 13979–13988 (2012).

    CAS  PubMed  Google Scholar 

  26. Yabushita, A., Kobayashi, T. & Tsuda, M. Time-resolved spectroscopy of ultrafast photoisomerization of octopus rhodopsin under photoexcitation. J. Phys. Chem. B 116, 1920–1926 (2012).

    CAS  PubMed  Google Scholar 

  27. Dexheimer, S. L. et al. Femtosecond impulsive excitation of nonstationary vibrational states in bacteriorhodopsin. Chem. Phys. Lett. 188, 61–66 (1992).

    CAS  Google Scholar 

  28. Pollard, W. T. et al. Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin. J. Phys. Chem. 96, 6147–6158 (1992).

    CAS  Google Scholar 

  29. Schnedermann, C., Liebel, M. & Kukura, P. Mode-specificity of vibrationally coherent internal conversion in rhodopsin during the primary visual event. J. Am. Chem. Soc. 137, 2886–2891 (2015).

    CAS  PubMed  Google Scholar 

  30. Kovalenko, S. A., Dobryakov, A. L., Ruthmann, J. & Ernsting, N. P. Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing. Phys. Rev. A 59, 2369–2384 (1999).

    CAS  Google Scholar 

  31. Goodno, G. D., Dadusc, G. & Miller, R. J. D. Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics. J. Opt. Soc. Am. B 15, 1791–1794 (1998).

    CAS  Google Scholar 

  32. Maznev, A. A., Nelson, K. A. & Rogers, J. A. Optical heterodyne detection of laser-induced gratings. Opt. Lett. 23, 1319–1321 (1998).

    CAS  PubMed  Google Scholar 

  33. Goodno, G. D. & Miller, R. J. D. Femtosecond heterodyne-detected four-wave-mixing studies of deterministic protein motions. 1. Theory and experimental technique of diffractive optics-based spectroscopy. J. Phys. Chem. A 103, 10619–10629 (1999).

    CAS  Google Scholar 

  34. Loppnow, G. R. & Mathies, R. A. Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities. Biophys. J. 54, 35–43 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kochendoerfer, G. G. & Mathies, R. A. Spontaneous emission study of the femtosecond isomerization dynamics of rhodopsin. J. Phys. Chem. 100, 14526–14532 (1996).

    CAS  Google Scholar 

  36. Kim, J. E. & Mathies, R. A. Anti-Stokes Raman study of vibrational cooling dynamics in the primary photochemistry of rhodopsin. J. Phys. Chem. A 106, 8508–8515 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Weingart, O. & Garavelli, M. Modelling vibrational coherence in the primary rhodopsin photoproduct. J. Chem. Phys. 137, 22A523 (2012).

    Google Scholar 

  38. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    CAS  PubMed  Google Scholar 

  39. Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004).

    CAS  PubMed  Google Scholar 

  40. Birge, R. R. & Pierce, B. M. A theoretical analysis of the two-photon properties of linear polyenes and the visual chromophores. J. Chem. Phys. 70, 165–178 (1979).

    CAS  Google Scholar 

  41. Becker, R. S. The visual process: photophysics and photoisomerization of model visual pigments and the primary reaction. Photochem. Photobiol. 48, 369–399 (1988).

    CAS  PubMed  Google Scholar 

  42. Curry, B. et al. Vibrational analysis of the retinal isomers. Adv. Infrared Raman Spectrosc. 12, 115–178 (1985).

    CAS  Google Scholar 

  43. Garavelli, M., Celani, P., Berardi, F., Robb, M. A. & Olivucci, M. The protonated Schiff base: an ab initio minimal model for retinal photoisomerization. J. Am. Chem. Soc. 119, 6891–6901 (1997).

    CAS  Google Scholar 

  44. Hiyashi, S., Tajkhorshid, E. & Schulten, K. Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophys. J. 96, 403–416 (2009).

    Google Scholar 

  45. Schaffer, H. E., Chance, R. R., Silbey, R. J., Knoll, K. & Schrock, R. R. Conjugation length dependence of Raman scattering in a series of linear polyenes: implications for polyacetylene. J. Chem. Phys. 94, 4161–4170 (1991).

    CAS  Google Scholar 

  46. Garavelli, M. et al. Photoisomerization path for a realistic retinal chromophore model: the nonatetraeniminium cation. J. Am. Chem. Soc. 120, 1285–1288 (1998).

    CAS  Google Scholar 

  47. Teller, E. The crossing of potential surfaces. J. Phys. Chem. 41, 109–116 (1937).

    CAS  Google Scholar 

  48. Ishii, K., Takeuchi, S. & Tahara, T. A 40-fs time-resolved absorption study on cis-stilbene in solution observation of wavepacket motion on the reactive excited state. Chem. Phys. Lett. 398, 400–406 (2004).

    CAS  Google Scholar 

  49. Ishii, K., Takeuchi, S. & Tahara, T. Pronounced non-Condon effects as the origin of the quantum beat observed in the time-resolved absorption signal from excited-state cis-stilbene. J. Phys. Chem. A 112, 2219–2227 (2008).

    CAS  PubMed  Google Scholar 

  50. Takeuchi, S. et al. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322, 1073–1077 (2008).

    CAS  PubMed  Google Scholar 

  51. Prokhorenko, V. I. et al. Coherent control of retinal isomerization in bacteriorhodopsin. Science 313, 1257–1261 (2006).

    CAS  PubMed  Google Scholar 

  52. Warshel, A. Bicycle-pedal model for the first step in the vision process. Nature 260, 679–683 (1976).

    CAS  PubMed  Google Scholar 

  53. Liu, R. S. H. & Asato, A. E. The primary process of vision and the structure of bathorhodopsin: a mechanism for photoisomerization of polyenes. Proc. Natl Acad. Sci. USA 82, 259–263 (1937).

    Google Scholar 

  54. Papermaster, D. S. & Dreyer, W. J. Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13, 2638–2444 (1974).

    Google Scholar 

  55. Morizumi, T., Imai, H. & Shichida, Y. Direct observation of the complex formation of GDP-bound transducin with the rhodopsin intermediate having a visible absorption maximum in rod outer segment membranes. Biochemistry 44, 9936–9943 (2005).

    CAS  PubMed  Google Scholar 

  56. Wald, G. & Brown, P. K. The molar extinction of rhodopsin. J. Gen. Physiol. 37, 189–200 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Johnson, P. J. M., Prokhorenko, V. I. & Miller, R. J. D. Enhanced bandwidth noncollinear optical parametric amplification with a narrowband anamorphic pump. Opt. Lett. 36, 2170–2172 (2011).

    PubMed  Google Scholar 

  58. Prokhorenko, V. I., Halpin, A. & Miller, R. J. D. Coherently-controlled two-dimensional photon echo electronic spectroscopy. Opt. Express 17, 9764–9779 (1998).

    Google Scholar 

  59. Harris, F. J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 51–83 (1978).

    Google Scholar 

Download references

Acknowledgements

P.J.M.J. thanks J.M. Morrow and B.S.W. Chang for many helpful discussions and shared laboratory equipment during the early stages of this work. L. Chen is acknowledged for excellent technical assistance. This research was supported by the Natural Sciences and Engineering Research Council of Canada (R.J.D.M.), the Max Planck Society (R.J.D.M.), the Canadian Institute for Advanced Research (R.J.D.M. and O.P.E.) and the Canada Excellence Research Chair program (O.P.E.). O.P.E. is the Anne & Max Tanenbaum Chair in Neuroscience at the University of Toronto.

Author information

Authors and Affiliations

Authors

Contributions

P.J.M.J., A.H. and V.I.P. constructed the instruments. T.M. prepared and characterized the sample. P.J.M.J. and A.H. performed the measurements. P.J.M.J and V.I.P. analysed the data. P.J.M.J. wrote the manuscript with editing from all authors. O.P.E. and R.J.D.M. supervised the project.

Corresponding author

Correspondence to R. J. Dwayne Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, P., Halpin, A., Morizumi, T. et al. Local vibrational coherences drive the primary photochemistry of vision. Nature Chem 7, 980–986 (2015). https://doi.org/10.1038/nchem.2398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing